forked from hazelgrove/hazelnut-dynamics-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlemmas-consistency.agda
53 lines (47 loc) · 1.88 KB
/
lemmas-consistency.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
open import Nat
open import Prelude
open import core-type
open import core
open import lemmas-index
module lemmas-consistency where
~refl : {τ : htyp} → τ ~ τ
~refl {τ = b} = ConsistBase
~refl {τ = T x} = ConsistVar
~refl {τ = ⦇-⦈} = ConsistHole1
~refl {τ = τ ==> τ₁} = ConsistArr ~refl ~refl
~refl {τ = ·∀ τ} = ConsistForall ~refl
~sym : {τ1 τ2 : htyp} → τ1 ~ τ2 → τ2 ~ τ1
~sym ConsistBase = ConsistBase
~sym ConsistVar = ConsistVar
~sym ConsistHole1 = ConsistHole2
~sym ConsistHole2 = ConsistHole1
~sym (ConsistArr con1 con2) = ConsistArr (~sym con1) (~sym con2)
~sym (ConsistForall consist) = ConsistForall (~sym consist)
~dec : (τ1 τ2 : htyp) → (τ1 ~ τ2) + (τ1 ~̸ τ2)
~dec _ ⦇-⦈ = Inl ConsistHole1
~dec ⦇-⦈ _ = Inl ConsistHole2
~dec b b = Inl ConsistBase
~dec (T x) (T x₁) with natEQ x x₁
... | Inl refl = Inl ConsistVar
... | Inr neq = Inr (λ{ConsistVar -> neq refl})
~dec (τ1 ==> τ2) (τ3 ==> τ4) with ~dec τ1 τ3 | ~dec τ2 τ4
... | Inl x | Inl y = Inl (ConsistArr x y)
... | Inl _ | Inr y = Inr (\{(ConsistArr l r) -> y r})
... | Inr x | _ = Inr (\{(ConsistArr l r) -> x l})
~dec (·∀ τ1) (·∀ τ2) with ~dec τ1 τ2
... | Inl yes = Inl (ConsistForall yes)
... | Inr no = Inr (λ {(ConsistForall x) → no x})
~dec b (T x) = Inr (λ ())
~dec b (τ2 ==> τ3) = Inr (λ ())
~dec b (·∀ τ2) = Inr (λ ())
~dec (T x) b = Inr (λ ())
~dec (T x) (τ2 ==> τ3) = Inr (λ ())
~dec (T x) (·∀ τ2) = Inr (λ ())
~dec (τ1 ==> τ2) b = Inr (λ ())
~dec (τ1 ==> τ2) (T x) = Inr (λ ())
~dec (τ1 ==> τ2) (·∀ τ3) = Inr (λ ())
~dec (·∀ τ1) b = Inr (λ ())
~dec (·∀ τ1) (T x) = Inr (λ ())
~dec (·∀ τ1) (τ2 ==> τ3) = Inr (λ ())
~̸-≠ : ∀{τ1 τ2} → τ1 ~̸ τ2 → τ1 ≠ τ2
~̸-≠ inconsis eq rewrite ! eq = abort (inconsis ~refl)