forked from hazelgrove/hazelnut-dynamics-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplete-preservation.agda
63 lines (58 loc) · 3.14 KB
/
complete-preservation.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
open import Nat
open import Prelude
open import core-type
open import core
open import lemmas-consistency
open import lemmas-wf
open import lemmas-subst
open import lemmas-complete
module complete-preservation where
complete-wt-filling : ∀{ ε Γ d τ d' } →
d dcomplete →
Γ ⊢ d :: τ →
d == ε ⟦ d' ⟧ →
Σ[ τ' ∈ htyp ] (Γ ⊢ d' :: τ' × d' dcomplete)
complete-wt-filling dc wt FHOuter = _ , wt , dc
complete-wt-filling (DCAp dc _) (TAAp wt _) (FHAp1 fill) = complete-wt-filling dc wt fill
complete-wt-filling (DCAp _ dc) (TAAp _ wt) (FHAp2 fill) = complete-wt-filling dc wt fill
complete-wt-filling (DCTAp _ dc) (TATAp _ wt _) (FHTAp fill) = complete-wt-filling dc wt fill
complete-wt-filling (DCCast dc _ _) (TACast wt _ _) (FHCast fill) = complete-wt-filling dc wt fill
complete-wt-different-fill : ∀{d ε d1 d2 d'} →
d dcomplete →
d2 dcomplete →
d == ε ⟦ d1 ⟧ →
d' == ε ⟦ d2 ⟧ →
d' dcomplete
complete-wt-different-fill dc1 dc2 FHOuter FHOuter = dc2
complete-wt-different-fill (DCAp dc1 dc3) dc2 (FHAp1 fill1) (FHAp1 fill2) = DCAp (complete-wt-different-fill dc1 dc2 fill1 fill2) dc3
complete-wt-different-fill (DCAp dc1 dc3) dc2 (FHAp2 fill1) (FHAp2 fill2) = DCAp dc1 (complete-wt-different-fill dc3 dc2 fill1 fill2)
complete-wt-different-fill (DCTAp tc dc1) dc2 (FHTAp fill1) (FHTAp fill2) = DCTAp tc (complete-wt-different-fill dc1 dc2 fill1 fill2)
complete-wt-different-fill (DCCast dc1 tc1 tc2) dc2 (FHCast fill1) (FHCast fill2) = DCCast (complete-wt-different-fill dc1 dc2 fill1 fill2) tc1 tc2
complete-preservation-trans : ∀{d τ d'} →
d dcomplete →
∅ ⊢ d :: τ →
d →> d' →
d' dcomplete
complete-preservation-trans _ TAConst ()
complete-preservation-trans _ TAEHole ()
complete-preservation-trans _ (TAVar _) ()
complete-preservation-trans _ (TALam _ _) ()
complete-preservation-trans _ (TATLam _) ()
complete-preservation-trans _ (TANEHole _) ()
complete-preservation-trans (DCCast dc _ _) _ ITCastID = dc
complete-preservation-trans (DCCast _ () _) _ (ITCastSucceed _)
complete-preservation-trans (DCCast _ () _) _ (ITCastFail _ _ _)
complete-preservation-trans (DCCast _ _ ()) _ (ITGround _)
complete-preservation-trans (DCCast _ () _) _ (ITExpand _)
complete-preservation-trans _ (TAFailedCast _ _ _ _) ()
complete-preservation-trans (DCTAp tc (DCTLam dc)) _ ITTLam = TtSub-complete tc dc
complete-preservation-trans (DCAp (DCLam dc1 _) dc2) _ ITLam = ttSub-complete dc2 dc1
complete-preservation-trans (DCAp (DCCast dc1 (TCArr tc1 tc2) (TCArr tc3 tc4)) dc2) _ ITApCast = DCCast (DCAp dc1 (DCCast dc2 tc3 tc1)) tc2 tc4
complete-preservation-trans (DCTAp tc1 (DCCast dc (TCForall tc2) (TCForall tc3))) _ ITTApCast = DCCast (DCTAp tc1 dc) (TTSub-complete tc1 tc2) (TTSub-complete tc1 tc3)
complete-preservation : ∀{d τ d'} →
d dcomplete →
∅ ⊢ d :: τ →
d ↦ d' →
d' dcomplete
complete-preservation dc wt (Step fill1 trans fill2) with complete-wt-filling dc wt fill1
... | _ , wt' , dc' = complete-wt-different-fill dc (complete-preservation-trans dc' wt' trans) fill1 fill2