-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculus.tex
1039 lines (923 loc) · 45.7 KB
/
calculus.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\section{The Marked Lambda Calculus}
\label{sec:calculus}
To begin to motivate the development of this section, consider \cref{fig:calculus-examples}, which
shows common type errors as they appear in the Hazel programming environment. These programs are
syntactically well-formed but ill-typed.
% For example, a simple error that may occur is the use of an free variable (\cref{fig:calculus-examples-free}).
% As in \cref{fig:calculus-examples-unbound}, the editor indicates that the usage of an free $y$ is
% invalid by highlighting it in red.
\input{figs/calculus-examples}
% With local type inference, an expression might have a expected type. Consider
% \cref{fig:calculus-examples-inconsistent-types}, in which it is expected that both operands of the
% $+$ operator are numbers. Since $\textsf{true}$ is not a number, a type error arises, and Hazel
% indicates an inconsistency between the expected and actual types of the operand. The application in
% \cref{fig:calculus-examples-app-non-lambda} of a non-lambda leads to a similar kind of error. In
% this case, however, the expectation is not a singular type, but any member of a family of function
% types. \Cref{fig:calculus-examples-inconsistent-branches} presents an error caused by inconsistent
% branch types. As discussed in the introduction, Hazel opts to highlight the entire expression in such a situation,
% while other tools may choose one branch to be ``correct'' and ``blame'' the type mismatch error on
% the other.
The key contribution of this section is the \emph{marked lambda calculus}, a calculus based on the
gradually typed lambda calculus (GTLC) that formalizes the mechanism by which errors like these can
be localized, and how to recover, in all cases, from such errors.
% In brief, the marked lambda calculus formalizes bidirectional type error localization with gradual
% recovery.
\Cref{sec:calculus-calculus} introduces the syntax, judgemental structure, guiding metatheory, and
then goes through the rules, organized by syntactic form rather than judgement, to build intuition
about how the various judgements relate to one another.
All rules and theorems may be found organized by judgement form in the supplementary appendix for
reference, alongside a complete mechanization in the Agda proof assistant \cite{norell2007}
(discussed in \cref{sec:calculus-agda}).
We intentionally keep the marked lambda calculus minimal, because it is intended to capture the
essential idea and introduce a general pattern that language designers can employ to created marked
variants of their own type systems.
As an initial example, we consider a surprisingly subtle combination of features as a more
substantial case study: the combination of destructing let expressions with granular type
annotations, in \cref{sec:calculus-let}.
Finally, \cref{sec:calculus-polymorphism} briefly explores how the system might be extended to more
complex judgemental structures, such as parametric polymorphism.
\subsection{The Core Calculus}
\label{sec:calculus-calculus}
The marked lambda calculus is based on the gradually typed lambda calculus \cite{siek2006} extended
with numbers, booleans, pairs, and empty expression holes \cite{omar2017a}.
Given in \cref{fig:calculus-syntax}, the syntax consists of two expression languages:
%
\begin{itemize}
\item The \emph{unmarked language}, which is the original language. Expressions of this language
are called \emph{unmarked expressions}, denoted by the metavariable $\EMV$.
\item The \emph{marked language}, which mirrors the structure of the unmarked language but is
extended with \emph{error marks}. We call expressions of this language \emph{marked expressions},
denoted $\ECMV$.
\end{itemize}
%
In this simple setting, we only need one sort for types, $\tau$.
The base types $\TNum$ and $\TBool$ classify number and boolean
expressions. The number literal corresponding to the mathematical number $n$ is given by $\ENumMV$,
and there is a single arithmetic operation, addition. $\ETrue$ and
$\EFalse$ are the boolean values and
$\EIf{\EMV_1}{\EMV_2}{\EMV_3}$ is the boolean conditional. Arrow and product types classify lambda abstractions and pairs, respectively, in the usual way.
$\TUnknown$ is a type hole, which we identify with the unknown type from gradual type theory \cite{siek2006}.
Finally, to model the edit state of a program in development, $\EEHole$ denotes an \emph{empty expression hole},
used to represent syntactically incomplete portions of the program à la Hazelnut
\cite{omar2017b}. Note, however, that these empty expression holes are not at all semantically
critical to the calculus---they are included illustrate how the calculus fits into the larger
problem of modelling incomplete program states and to discuss polymorphic generalization in
\cref{sec:polymorphicGlobal}.
\begin{figure}[htbp]
\[\begin{array}{rrcl}
\TMName & \TMV & \Coloneqq & \TUnknown \mid \TNum \mid \TBool \mid \TArrow{\TMV}{\TMV} \mid \TProd{\TMV}{\TMV} \\
\EMName & \EMV & \Coloneqq & x \mid \ELam{x}{\TMV}{\EMV} \mid \EAp{\EMV}{\EMV} \mid \ELet{x}{\EMV}{\EMV}
\mid \ENumMV \mid \EPlus{\EMV}{\EMV} \\
& & \mid & \ETrue \mid \EFalse \mid \EIf{\EMV}{\EMV}{\EMV}
\mid \EPair{\EMV}{\EMV}
\mid \EProjL{\EMV} \mid \EProjR{\EMV}
\mid \EEHole \\
\ECMName & \ECMV & \Coloneqq & x \mid \ECLam{x}{\TMV}{\ECMV} \mid \ECAp{\ECMV}{\ECMV} \mid \ECLet{x}{\ECMV}{\ECMV}
\mid \ECNumMV \mid \ECPlus{\ECMV}{\ECMV} \\
& & \mid & \ECTrue \mid \ECFalse \mid \ECIf{\ECMV}{\ECMV}{\ECMV}
\mid \ECPair{\ECMV}{\ECMV} \mid \ECProjL{\ECMV} \mid \ECProjR{\ECMV}
\mid \ECEHole \\
& & \mid & \ECFree{x} \mid \ECInconType{\ECMV} \\
& & \mid & \ECLamInconAsc{x}{\TMV}{\ECMV} \mid \ECLamAnaNonMatchedArrow{x}{\TMV}{\ECMV} \mid \ECApSynNonMatchedArrow{\ECMV}{\ECMV} \\
& & \mid & \ECInconBr{\ECMV}{\ECMV}{\ECMV} \\
& & \mid & \ECPairAnaNonMatchedProd{\ECMV}{\ECMV} \mid \ECProjLSynNonMatchedProd{\ECMV} \mid \ECProjRSynNonMatchedProd{\ECMV}
\end{array}\]
\caption{Syntax of the marked lambda calculus.}
\label{fig:calculus-syntax}
\end{figure}
The key operation is \emph{marking}, which transforms an unmarked expression into a marked expression,
inserting error marks where appropriate.
This corresponds to a type checking
process with error localization and recovery. The marked language may then serve as a foundation for
other semantic services, such as constraint-based inference (as discussed in
\cref{sec:thi}).
Intuitively, each of the mark forms corresponds to a different kind of error message that might be shown by an editor or emitted by a compiler. Note that we do not specify what the error message should say in this paper.
Throughout the remainder of this section, as we formulate marking for the GTLC, we will motivate and
give precise semantics for each error mark. Furthermore, when the core is extended, new marks may be needed, as we discuss below.
As we shall see, the rules for marking may be systematically derived by considering the error cases, yielding a recipe for developing error localization and recovery semantics for gradual, bidirectional type systems in general.
Before giving any of the rules, let us summarize the overall judgemental structure of the calculus. Note that colors in the judgement forms below are entirely redundant reading aids---color has no semantic significance.
As our starting point, types classify unmarked expressions by a completely standard \emph{bidirectional type system} \cite{dunfield2019,pierce2000}, which employs
two mutually defined judgments. \emph{Type synthesis}, written $\ctxSynTypeU{\ctx}{\EMV}{\TMV}$,
establishes that, under the typing context $\ctx$, the expression $e$ synthesizes or locally infers the type $\TMV$. \emph{Type analysis}, written $\ctxAnaTypeU{\ctx}{\EMV}{\TMV}$,
states that the expression $\EMV$ may appear where an expression of type $\TMV$ is expected.
The marked language possesses its own type system, also formulated bidirectionally. We write
$\ctxSynTypeM{\ctx}{\ECMV}{\TMV}$ for synthesis and $\ctxAnaTypeM{\ctx}{\ECMV}{\TMV}$ for analysis (in addition to the color difference, note the subscript on the turnstile to distinguish marked from unmarked typing).
Finally, the \emph{marking} judgment is also of bidirectional nature. The synthetic marking judgment
$\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$ establishes that, under the context $\Gamma$, the
unmarked expression $\EMV$ is ``marked into'' the marked expression $\ECMV$, which synthesizes type
$\TMV$. Analogously, the analytic marking judgment $\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$
states that $\EMV$ is marked into $\ECMV$, which analyzes against $\TMV$.
How can we ensure that the marking procedure is correctly defined? There are two critical
metatheorems that guide us as we continue. The first is a \emph{totality} of marking:
%
\begin{theorem}[name=Marking Totality] \
\label{thm:calculus-marking-totality}
\begin{enumerate}
\item For all $\ctx$ and $\EMV$, there exist $\ECMV$ and $\TMV$ such that
$\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$ and $\ctxSynTypeM{\ctx}{\ECMV}{\TMV}$.
\item For all $\ctx$, $\EMV$, and $\TMV$, there exists $\ECMV$ such that
$\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$ and $\ctxAnaTypeM{\ctx}{\ECMV}{\TMV}$.
\end{enumerate}
\end{theorem}
%
That is, we may mark \emph{any} syntactically well-formed program in any context, resulting in a \emph{well-typed} marked program.
Furthermore, since error marks are effectively annotations on top of the program, marking should
preserve syntactic structure modulo those marks. \cref{fig:calculus-mark-erasure} gives part of the definition of \emph{mark erasure}, which converts marked expressions back into unmarked ones by
removing error marks.
\input{figs/calculus-mark-erasure}
Then, \cref{thm:calculus-marking-well-formedness} provides the necessary
\emph{well-formedness} criterion for marking.
%
\begin{theorem}[name=Marking Well-Formedness] \
\label{thm:calculus-marking-well-formedness}
\begin{enumerate}
\item If $\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$,
then $\ctxSynTypeM{\ctx}{\ECMV}{\TMV}$
and $\erasesTo{\ECMV}{\EMV}$.
\item If $\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$,
then $\ctxAnaTypeM{\ctx}{\ECMV}{\TMV}$
and $\erasesTo{\ECMV}{\EMV}$.
\end{enumerate}
\end{theorem}
%
Together, these metatheorems imply that to go from a standard bidirectional system for the unmarked language to a marking system, we need to handle all possible failure modes with appropriate marks and marking logic (otherwise totality would be violated) and without otherwise changing the program (otherwise well-formedness would be violated). Now, let us consider each form in turn.
\subsubsection{Numbers}
\label{sec:calculus-numbers}
To start, consider the simple case of numbers. Because of \emph{subsumption}, which is
discussed in more detail next, we need only define a synthesis rule for unmarked numbers, in which
number literals synthesize the type $\TNum$:
%
\begin{mathpar}
\judgment{ }{
\ctxSynTypeU{\ctx}{\ENumMV}{\TNum}
}{USNum}
\end{mathpar}
How should numbers be marked? Straightforwardly, we simply give the same number as a marked
expression, synthesizing again $\TNum$. No type errors may occur in a just single number, so we only need
the following rules for marking numbers and typing the results:
%
\begin{mathpar}
\judgment{
}{
\ctxSynFixedInto{\ctx}{\ENumMV}{\ECNumMV}{\TNum}
}{MKSNum}
\judgment{ }{
\ctxSynTypeM{\ctx}{\ECNumMV}{\TNum}
}{MSNum}
\end{mathpar}
For addition expressions, the type of both operands should be $\TNum$. To denote this in a
bidirectional system, they are analyzed against $\TNum$, giving the following typing rule for
unmarked addition expressions:
%
\begin{mathpar}
\judgment{
\ctxAnaTypeU{\ctx}{\EMV_1}{\TNum} \\
\ctxAnaTypeU{\ctx}{\EMV_2}{\TNum}
}{
\ctxSynTypeU{\ctx}{\EPlus{\EMV_1}{\EMV_2}}{\TNum}
}{USPlus}
\end{mathpar}
The marking rule parallels \textsc{USPlus} closely. Since an expected type for each operand is known,
we shift the responsibility for any type errors to them. Hence, we recursively mark each operand in
analytic mode and rebuild the marked addition expression. The typing rule for marked addition
expressions then mirrors \textsc{USPlus} exactly.
%
\begin{mathpar}
\judgment{
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TNum} \\
\ctxAnaFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TNum}
}{
\ctxSynFixedInto{\ctx}{\EPlus{\EMV_1}{\EMV_2}}{\ECPlus{\ECMV_1}{\ECMV_2}}{\TNum}
}{MKSPlus}
\judgment{
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TNum} \\
\ctxAnaTypeM{\ctx}{\ECMV_2}{\TNum}
}{
\ctxSynTypeM{\ctx}{\ECPlus{\ECMV_1}{\ECMV_2}}{\TNum}
}{MSPlus}
\end{mathpar}
\subsubsection{Subsumption}
\label{sec:calculus-subsumption}
Only synthetic rules are necessary for typing numbers and addition because of \emph{subsumption},
given below, which states that if an expression synthesizes a type, it may also be analyzed against
that type or any consistent type.
\[%
\judgment{
\ctxSynTypeU{\ctx}{\EMV}{\TMV'} \\
\consistent{\TMV}{\TMV'} \\
\subsumable{\EMV}
}{
\ctxAnaTypeU{\ctx}{\EMV}{\TMV}
}{UASubsume}
\]%
We rely on the notion of \emph{type consistency} from gradual type theory, which defines a reflexive
and symmetric (but not transitive) relation between types, writing $\consistent{\TMV_1}{\TMV_2}$ to
mean that $\TMV_1$ is consistent with $\TMV_2$. Defined in \cref{fig:calculus-consistency}, this
replaces the notion of \emph{type equality} to relate the unknown type to all other types.
\begin{figure}[htbp]
\raggedright
\judgbox{\ensuremath{\consistent{\TMV_1}{\TMV_2}}} $\TMV_1$ is consistent with $\TMV_2$
%
\begin{mathpar}
\judgment{ }{
\consistent{\TUnknown}{\TMV}
}{TCUnknown1}
\judgment{ }{
\consistent{\TMV}{\TUnknown}
}{TCUnknown2}
\judgment{ }{
\consistent{\TMV}{\TMV}
}{TCRefl}
\judgment{
\consistent{\TMV_1}{\TMV_1'} \\
\consistent{\TMV_2}{\TMV_2'} \\
}{
\consistent{\TArrow{\TMV_1}{\TMV_2}}{\TArrow{\TMV_1'}{\TMV_2'}}
}{TCArr}
\inferrule[TCProd]{
\consistent{\TMV_1}{\TMV_1'} \\
\consistent{\TMV_2}{\TMV_2'} \\
}{
\consistent{\TProd{\TMV_1}{\TMV_2}}{\TProd{\TMV_1'}{\TMV_2'}}
}
\end{mathpar}
\vspace{-10px}
\caption{Type consistency.}
\label{fig:calculus-consistency}
\end{figure}
Hence, when checking $\ENumMV$ against a known expected type, subsumption checks that the type is
consistent with $\TNum$, the type that $\ENumMV$ synthesizes. This succeeds for $\TUnknown$ and
$\TNum$.
We also restrict the usage of subsumption to ``subsumable'' syntactic forms, written
$\subsumable{\EMV}$. This judgment is defined for all syntactic forms except lambda abstractions,
conditionals, and pairs, the only ones with both synthesis and analysis rules (see below). In other words, we restrict subsumption to
be the rule of ``last resort'', which is necessary to establish that marking and typing are
deterministic (see \cref{thm:calculus-marking-unicity}).
Now, to define analytic marking on forms without explicit analytic typing rules, we also need
subsumption rules for marking and marked expression typing. Note that we define an analogous notion
of ``subsumability'' for marked expressions, written $\subsumable{\ECMV}$.
%
\begin{mathpar}
\judgment{
\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV'} \\
\consistent{\TMV}{\TMV'} \\
\subsumable{\EMV}
}{
\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}
}{MKASubsume}
\judgment{
\ctxSynTypeM{\ctx}{\ECMV}{\TMV'} \\
\consistent{\TMV}{\TMV'} \\
\subsumable{\ECMV}
}{
\ctxAnaTypeM{\ctx}{\ECMV}{\TMV}
}{MASubsume}
\end{mathpar}
But what happens when the synthesized type of an expression is \emph{not} consistent with the
expected type, i.e., that the premise $\consistent{\TMV}{\TMV'}$ fails? Recalling the example of
\cref{fig:calculus-examples-inconsistent-types}, subsumption would be used to analyze $\ETrue$
against $\TNum$ when checking $\EPlus{\ETrue}{1}$, which fails since
$\inconsistent{\TNum}{\TBool}$---\textsc{UASubsume} does not apply. At this point, traditional typing semantics would simply fail the type
checking process. \textsc{MKASubsume} would also not be applicable, leaving marking
undefined in those cases.
To satisfy marking totality, such a possibility motivates an \emph{inconsistent type mark}
$\ECInconType{\ECMV}$, which is applied when the synthesized type of $\ECMV$ is inconsistent
with the expected type:
%
\begin{mathpar}
\judgment{
\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV'} \\
\inconsistent{\TMV}{\TMV'} \\
\subsumable{\EMV}
}{
\ctxAnaFixedInto{\ctx}{\EMV}{\ECInconType{\ECMV}}{\TMV}
}{MKAInconsistentTypes}
\judgment{
\ctxSynTypeM{\ctx}{\ECMV}{\TMV'} \\
\inconsistent{\TMV}{\TMV'} \\
\subsumable{\ECMV}
}{
\ctxAnaTypeM{\ctx}{\ECInconType{\ECMV}}{\TMV}
}{MAInconsistentTypes}
\end{mathpar}
%
Observe that the premises of \textsc{MKAInconsistentTypes} are identical to those of
\textsc{MKASubsume}, except that $\inconsistent{\TMV}{\TMV'}$. By marking an error, the type checking process may carry on and provide semantic feedback for the rest of the program.
\subsubsection{Variables}
\label{sec:calculus-variables}
Let us now consider the case of variables. Typing in the unmarked language is standard, and because
of subsumption, only a synthetic rule is required:
\[%
\judgment{
\inCtx{\ctx}{x}{\TMV}
}{
\ctxSynTypeU{\ctx}{x}{\TMV}
}{USVar}
\]%
That is, if $x$ is bound to a type in the typing context, it synthesizes that type.
Straightforwardly, marking converts an unmarked variable into the same variable via the following
rules:
%
\begin{mathpar}
\judgment{
\inCtx{\ctx}{x}{\TMV}
}{
\ctxSynFixedInto{\ctx}{x}{x}{\TMV}
}{MKSVar}
\judgment{
\inCtx{\ctx}{x}{\TMV}
}{
\ctxSynTypeM{\ctx}{x}{\TMV}
}{MSVar}
\end{mathpar}
However, consider the case that a variable, such as $y$ in \cref{fig:calculus-examples-free}, is \emph{not}
bound. Similar to above, \textsc{USVar} would not apply. A total marking procedure should, however, report the error and
continue, motivating a \emph{free variable mark} $\ECFree{x}$ and the accompanying rules:
%
\begin{mathpar}
\judgment{
\notInCtx{\ctx}{x}
}{
\ctxSynFixedInto{\ctx}{x}{\ECFree{x}}{\TUnknown}
}{MKSFree}
\judgment{
\notInCtx{\ctx}{x}
}{
\ctxSynTypeM{\ctx}{\ECFree{x}}{\TUnknown}
}{MSFree}
\end{mathpar}
%
A free variable is marked as such, and since nothing may be said about their types, we synthesize
the unknown type. As with the inconsistent type mark, this allows type checking to proceed, with
usage of the free variable permitted in any expression.
\subsubsection{Lambda Abstractions}
\label{sec:calculus-lambda-abstractions}
Unlike numbers and variables, there are explicit synthesis and analysis rules for unmarked lambda
abstractions. This is because expected input and output types are known, and we may verify that the
type annotation and body match them.
%
\begin{mathpar}
\judgment{
\ctxSynTypeU{\extendCtx{\ctx}{x}{\TMV_1}}{\EMV}{\TMV_2}
}{
\ctxSynTypeU{\ctx}{\ELam{x}{\TMV_1}{\EMV}}{\TArrow{\TMV_1}{\TMV_2}}
}{USLam}
\judgment{
\matchedArrow{\TMV_3}{\TMV_1}{\TMV_2} \\
\consistent{\TMV}{\TMV_1} \\
\ctxAnaTypeU{\extendCtx{\ctx}{x}{\TMV}}{\EMV}{\TMV_2}
}{
\ctxAnaTypeU{\ctx}{\ECLam{x}{\TMV}{\EMV}}{\TMV_3}
}{UALam}
\end{mathpar}
%
The synthesis rule is standard. Analysis employs the judgment $\matchedArrow{\TMV}{\TMV_1}{\TMV_2}$,
which establishes that $\TMV$ is a \emph{matched arrow type} \cite{cimini2016}, i.e., it may be
considered an arrow type. Defined in \cref{fig:calculus-matched-arrow}, this notion is purely a
technical mechanism to avoid duplication of rules related to arrow types \cite{siek2015}.
\begin{figure}[htbp]
\raggedright
\judgbox{\ensuremath{\matchedArrow{\TMV}{\TMV_1}{\TMV_2}}} $\TMV$ has matched arrow type $\TArrow{\TMV_1}{\TMV_2}$
%
\begin{mathpar}
\judgment{ }{
\matchedArrow{\TUnknown}{\TUnknown}{\TUnknown}
}{TMAUnknown}
\judgment{ }{
\matchedArrow{\TArrow{\TMV_1}{\TMV_2}}{\TMV_1}{\TMV_2}
}{TMAArr}
\end{mathpar}
\vspace{-10px}
\caption{Matched arrow types.}
\label{fig:calculus-matched-arrow}
\end{figure}
The synthesis rule for marking intuitively follows \textsc{USLam} closely. We recursively
mark the body with an extended context and construct a new marked lambda
abstraction:
%
\begin{mathpar}
\judgment{
\ctxSynFixedInto{\extendCtx{\ctx}{x}{\TMV_1}}{\EMV}{\ECMV}{\TMV_2}
}{
\ctxSynFixedInto{\ctx}{\ELam{x}{\TMV_1}{\EMV}}{\ELam{x}{\TMV_1}{\ECMV}}{\TArrow{\TMV_1}{\TMV_2}}
}{MKSLam}
\judgment{
\ctxSynTypeM{\extendCtx{\ctx}{x}{\TMV_1}}{\ECMV}{\TMV_2}
}{
\ctxSynTypeM{\ctx}{\ECLam{x}{\TMV_1}{\ECMV}}{\TArrow{\TMV_1}{\TMV_2}}
}{MSLam}
\end{mathpar}
%
Similarly, we construct corresponding analytic rules:
%
\begin{mathpar}
\judgment{
\matchedArrow{\TMV_3}{\TMV_1}{\TMV_2} \\
\consistent{\TMV}{\TMV_1} \\\\
\ctxAnaFixedInto{\extendCtx{\ctx}{x}{\TMV}}{\EMV}{\ECMV}{\TMV_2}
}{
\ctxAnaFixedInto{\ctx}{\ELam{x}{\TMV}{\EMV}}{\ECLam{x}{\TMV}{\ECMV}}{\TMV_3}
}{MKALam1}
\judgment{
\matchedArrow{\TMV_3}{\TMV_1}{\TMV_2} \\
\consistent{\TMV}{\TMV_1} \\\\
\ctxAnaTypeM{\extendCtx{\ctx}{x}{\TMV}}{\ECMV}{\TMV_2}
}{
\ctxAnaTypeM{\ctx}{\ECLam{x}{\TMV}{\ECMV}}{\TMV_3}
}{MALam1}
\end{mathpar}
However, recalling totality, we look again to the premises of \textsc{UALam} to see what type errors
may arise. First, what if $\TMV_3$ is not a matched arrow type? This would be the case if it were
$\TNum$, for example. The lambda abstraction's synthesized type would indeed be inconsistent with
the expected type, but this case is slightly distinct from that of the inconsistent types mark: the
lambda expression is in analytic position. Instead, we mark $\ECAnaNonMatchedArrow{\ECMV}$ to
indicate that an expression of the non-matched arrow type $\TMV_3$ was expected, but a lambda
abstraction was encountered.
%
\begin{mathpar}
\judgment{
\notMatchedArrow{\TMV_3} \\
\ctxAnaFixedInto{\extendCtx{\ctx}{x}{\TMV}}{\EMV}{\ECMV}{\TUnknown}
}{
\ctxAnaFixedInto{\ctx}{\ELam{x}{\TMV}{\EMV}}{\ECLamAnaNonMatchedArrow{x}{\TMV}{\ECMV}}{\TMV_3}
}{MKALam2}
\judgment{
\notMatchedArrow{\TMV_3} \\
\ctxAnaTypeM{\extendCtx{\ctx}{x}{\TMV}}{\ECMV}{\TUnknown}
}{
\ctxAnaTypeM{\ctx}{\ECLamAnaNonMatchedArrow{x}{\TMV}{\ECMV}}{\TMV_3}
}{MALam2}
\end{mathpar}
%
Though no expected output type is known, we still need to check and mark the body; it is thus
analyzed against the unknown type in \textsc{MKALam2}. It is possible to instead synthesize the
body, but we choose analysis so that the body is always in analytic mode. The guiding design
principle in this decision is a notion of ``conservation of mode,'' but it is not critical to the
calculus.
Note that in this example language, the distinction from the inconsistent type mark is of reduced
significance---all expressions synthesize a type. However, the addition of unannotated lambda
abstractions, for example, would necessitate such a distinction.
Another error arises when $\matchedArrow{\TMV_3}{\TMV_1}{\TMV_2}$, but
$\inconsistent{\TMV}{\TMV_1}$, i.e., the actual type annotation for $x$ is inconsistent with the
expected input type. The \emph{inconsistent ascription mark} $\ECLamInconAsc{x}{\TMV}{\ECMV}$ indicates exactly this
error, and we add a final pair of analytic rules:
%
\begin{mathpar}
\judgment{
\matchedArrow{\TMV_3}{\TMV_1}{\TMV_2} \\
\inconsistent{\TMV}{\TMV_1} \\\\
\ctxAnaFixedInto{\extendCtx{\ctx}{x}{\TMV}}{\EMV}{\ECMV}{\TMV_2}
}{
\ctxAnaFixedInto{\ctx}{\ELam{x}{\TMV}{\EMV}}{\ECLamInconAsc{x}{\TMV}{\ECMV}}{\TMV_3}
}{MKALam3}
\judgment{
\matchedArrow{\TMV_3}{\TMV_1}{\TMV_2} \\
\inconsistent{\TMV}{\TMV_1} \\\\
\ctxAnaTypeM{\extendCtx{\ctx}{x}{\TMV}}{\ECMV}{\TMV_2}
}{
\ctxAnaTypeM{\ctx}{\ECLamInconAsc{x}{\TMV}{\ECMV}}{\TMV_3}
}{MALam3}
\end{mathpar}
\subsubsection{Applications}
\label{sec:calculus-applications}
In the unmarked language, only a synthesis rule is necessary for applications:
\[%
\judgment{
\ctxSynTypeU{\ctx}{\EMV_1}{\TMV} \\
\matchedArrow{\TMV}{\TMV_1}{\TMV_2} \\
\ctxAnaTypeU{\ctx}{\EMV_2}{\TMV_1}
}{
\ctxSynTypeU{\ctx}{\EAp{\EMV_1}{\EMV_2}}{\TMV_2}
}{USAp}
\]%
Following the same methodology up to this point, we have the following marking and typing
rules:
%
\begin{mathpar}
\judgment{
\ctxSynFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TMV} \\
\matchedArrow{\TMV}{\TMV_1}{\TMV_2} \\\\
\ctxAnaFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV_1} \\
}{
\ctxSynFixedInto{\ctx}{\EAp{\EMV_1}{\EMV_2}}{\ECAp{\ECMV_1}{\ECMV_2}}{\TMV_2}
}{MKSAp1}
\judgment{
\ctxSynTypeM{\ctx}{\ECMV_1}{\TMV} \\
\matchedArrow{\TMV}{\TMV_1}{\TMV_2} \\\\
\ctxAnaTypeM{\ctx}{\ECMV_2}{\TMV_1}
}{
\ctxSynTypeM{\ctx}{\ECAp{\ECMV_1}{\ECMV_2}}{\TMV_2}
}{MSAp1}
\end{mathpar}
Again, to satisfy totality, we must consider the case when $\TMV$ is not a matched arrow type, such
as in the example of \cref{fig:calculus-examples-app-non-lambda}. There is no expected type for the
argument, so we perform analytic marking on $\EMV_2$ against the unknown type. In this case, it is
not quite right to mark $\EMV_1$ with the inconsistent type mark; rather than any single type, it is
any member of the family of arrow types that is expected. For such a ``constrained'' synthetic
mode, we use a specialized mark $\ECSynNonMatchedArrow{\ECMV}$, which indicates that $\ECMV$ was
expected to be a function---but was not. The output type is unknown, so the entire expression
synthesizes the unknown type.
%
\begin{mathpar}
\judgment{
\ctxSynFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TMV} \\
\notMatchedArrow{\TMV} \\
\ctxAnaFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TUnknown}
}{
\ctxSynFixedInto{\ctx}{\EAp{\EMV_1}{\EMV_2}}{\ECApSynNonMatchedArrow{\ECMV_1}{\ECMV_2}}{\TUnknown}
}{MKSAp2}
\judgment{
\ctxSynTypeM{\ctx}{\ECMV_1}{\TMV} \\
\notMatchedArrow{\TMV} \\
\ctxAnaTypeM{\ctx}{\ECMV_2}{\TUnknown}
}{
\ctxSynTypeM{\ctx}{\ECApSynNonMatchedArrow{\ECMV}{\ECMV}}{\TUnknown}
}{MSAp2}
\end{mathpar}
It is natural to extend this approach to other elimination forms that require the handling of
unmatched types, such as products. Indeed, the same approach is taken for projections below.
Another similar approach might indicate the same kind of error but mark the entire application.
\subsubsection{Booleans}
\label{sec:calculus-booleans}
The boolean values are similar to numbers:
%
\begin{mathpar}
\judgment{ }{
\ctxSynTypeU{\ctx}{\ETrue}{\TBool}
}{USTrue}
\judgment{
}{
\ctxSynFixedInto{\ctx}{\ETrue}{\ECTrue}{\TBool}
}{MKSTrue}
\judgment{ }{
\ctxSynTypeM{\ctx}{\ECTrue}{\TBool}
}{MSTrue} \\
\judgment{ }{
\ctxSynTypeU{\ctx}{\EFalse}{\TBool}
}{USFalse}
\judgment{
}{
\ctxSynFixedInto{\ctx}{\EFalse}{\ECFalse}{\TBool}
}{MKSFalse}
\judgment{ }{
\ctxSynTypeM{\ctx}{\ECFalse}{\TBool}
}{MSFalse}
\end{mathpar}
Conditionals, however, present a more interesting case. In the unmarked language, we have both explicit
synthetic and analytic rules:
%
\begin{mathpar}
\judgment{
\ctxAnaTypeU{\ctx}{\EMV_1}{\TBool} \\
\ctxSynTypeU{\ctx}{\EMV_2}{\TMV_1} \\\\
\ctxSynTypeU{\ctx}{\EMV_3}{\TMV_2} \\
\TMV_3 = \TMeet{\TMV_1}{\TMV_2}
}{
\ctxSynTypeU{\ctx}{\EIf{\EMV_1}{\EMV_2}{\EMV_3}}{\TMV_3}
}{USIf}
\judgment{
\ctxAnaTypeU{\ctx}{\EMV_1}{\TBool} \\\\
\ctxAnaTypeU{\ctx}{\EMV_1}{\TMV} \\
\ctxAnaTypeU{\ctx}{\EMV_2}{\TMV}
}{
\ctxAnaTypeU{\ctx}{\ECIf{\EMV_1}{\EMV_2}{\EMV_3}}{\TMV}
}{UAIf}
\end{mathpar}
%
In synthetic position, conditionals synthesize the \emph{meet} of the branch types $\TMV_1$ and
$\TMV_2$, which we define inductively in \cref{fig:calculus-type-meet}. We choose the ``more
specific'' type of the two. In analytic position, since
there is an expected type for both branches, we shift the blame for any errors to them.
\newcommand{\meetsTo}[3]{\ensuremath{\TMeet{#1}{#2} & = & #3}}
\begin{figure}[htbp]
\raggedright
\judgbox{\ensuremath{\TMeet{\TMV_1}{\TMV_2}}} is a \emph{partial} metafunction defined as follows:
%
\[\begin{array}{rcl}
\meetsTo{\TUnknown}{\TMV}{\TMV} \\
\meetsTo{\TMV}{\TUnknown}{\TMV} \\
\meetsTo{\TNum}{\TNum}{\TNum} \\
\meetsTo{\TBool}{\TBool}{\TBool} \\
\meetsTo{(\TArrow{\TMV_1}{\TMV_2})}{(\TArrow{\TMV_1'}{\TMV_2'})}{\TArrow{(\TMeet{\TMV_1}{\TMV_1'})}{(\TMeet{\TMV_2}{\TMV_2'})}} \\
\meetsTo{(\TProd{\TMV_1}{\TMV_2})}{(\TProd{\TMV_1'}{\TMV_2'})}{\TProd{(\TMeet{\TMV_1}{\TMV_1'})}{(\TMeet{\TMV_2}{\TMV_2'})}}
\end{array}\]
\vspace{-10px}
\caption{Type meet.}
\label{fig:calculus-type-meet}
\end{figure}
Following \textsc{USIf} and \textsc{UAIf}, we may derive the following marking and typing rules.
% Similar to previous cases, we recursively mark the guard and branches, constructing the marked
% conditional from the results.
%
\begin{mathpar}
\judgment{
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TBool} \\
\ctxSynFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV_1} \\\\
\ctxSynFixedInto{\ctx}{\EMV_3}{\ECMV_3}{\TMV_2} \\
\TMV_3 = \TMeet{\TMV_1}{\TMV_2}
}{
\ctxSynFixedInto{\ctx}{\EIf{\EMV_1}{\EMV_2}{\EMV_3}}{\ECIf{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TMV_3}
}{MKSIf}
\judgment{
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TBool} \\
\ctxSynTypeM{\ctx}{\ECMV_2}{\TMV_1} \\\\
\ctxSynTypeM{\ctx}{\ECMV_3}{\TMV_2} \\
\TMV_3 = \TMeet{\TMV_1}{\TMV_2}
}{
\ctxSynTypeM{\ctx}{\ECIf{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TMV_3}
}{MSIf} \\
\judgment{
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TBool} \\\\
\ctxAnaFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV} \\
\ctxAnaFixedInto{\ctx}{\EMV_3}{\ECMV_3}{\TMV} \\
}{
\ctxAnaFixedInto{\ctx}{\EIf{\EMV_1}{\EMV_2}{\EMV_3}}{\ECIf{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TMV}
}{MKAIf}
\judgment{
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TBool} \\\\
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TMV} \\
\ctxAnaTypeM{\ctx}{\ECMV_2}{\TMV}
}{
\ctxAnaTypeM{\ctx}{\ECIf{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TMV}
}{MAIf}
\end{mathpar}
However, in synthetic position, it may be the case that the two branch types have no meet. This
occurs, in fact, when they are inconsistent, motivating the \emph{the inconsistent branches mark}
$\ECInconBr{\ECMV}{\ECMV}{\ECMV}$. Then, adding the following rules ensures totality on
conditionals:
%
\begin{mathpar}
\judgment{
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TBool} \\
\ctxSynFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV_1} \\\\
\ctxSynFixedInto{\ctx}{\EMV_3}{\ECMV_3}{\TMV_2} \\
\inconsistent{\TMV_1}{\TMV_2}
}{
\ctxSynFixedInto{\ctx}{\EIf{\EMV_1}{\EMV_2}{\EMV_3}}{\ECInconBr{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TUnknown}
}{MKSInconsistentBranches}
\judgment{
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TBool} \\
\ctxSynTypeM{\ctx}{\ECMV_2}{\TMV_1} \\\\
\ctxSynTypeM{\ctx}{\ECMV_3}{\TMV_2} \\
\inconsistent{\TMV_1}{\TMV_2}
}{
\ctxSynTypeM{\ctx}{\ECInconBr{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TUnknown}
}{MSInconsistentBranches}
\end{mathpar}
As previously mentioned, we do not prescribe any single localization design as ``correct'', and the framework freely allows for other approaches.
For example, as discussed in the introduction, we may choose to regard the first branch as ``correct'' and localize any
errors to the second. The following rule formalizes such a design:
\[%
\judgment{
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TBool} \\
\ctxSynFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV} \\
\ctxAnaFixedInto{\ctx}{\EMV_3}{\ECMV_3}{\TMV}
}{
\ctxSynFixedInto{\ctx}{\EIf{\EMV_1}{\EMV_2}{\EMV_3}}{\ECIf{\ECMV_1}{\ECMV_2}{\ECMV_3}}{\TMV}
}{MKSIf'}
\]%
% Of course, corresponding unmarked and marked typing rules would follow similar structure, and other
% heuristics may be devised for different kinds of branching structures.
\subsubsection{Pairs}
At this point, the introduction of pairs expressions and the necessary projection operators poses no great challenge.
Explicit synthesis and analysis rules govern the former.
%
\begin{mathpar}
\inferrule[USPair]{
\ctxSynTypeU{\ctx}{\EMV_1}{\TMV_1} \\
\ctxSynTypeU{\ctx}{\EMV_2}{\TMV_2}
}{
\ctxSynTypeU{\ctx}{\EPair{\EMV_1}{\EMV_2}}{\TProd{\TMV_1}{\TMV_2}}
}
\inferrule[UAPair]{
\matchedProd{\TMV}{\TMV_1}{\TMV_2} \\
\ctxAnaTypeU{\ctx}{\EMV_1}{\TMV_1} \\
\ctxAnaTypeU{\ctx}{\EMV_2}{\TMV_2}
}{
\ctxAnaTypeU{\ctx}{\EPair{\EMV_1}{\EMV_2}}{\TMV}
}
\end{mathpar}
%
In similar fashion to above, we may derive marking rules from these in an intuitive manner:
%
\begin{mathpar}
\inferrule[MKSPair]{
\ctxSynFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TMV_1} \\
\ctxSynFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV_2}
}{
\ctxSynFixedInto{\ctx}{\EPair{\EMV_1}{\EMV_2}}{\ECPair{\ECMV_1}{\ECMV_2}}{\TProd{\TMV_1}{\TMV_2}}
}
\inferrule[MSPair]{
\ctxSynTypeM{\ctx}{\ECMV_1}{\TMV_1} \\
\ctxSynTypeM{\ctx}{\ECMV_2}{\TMV_2}
}{
\ctxSynTypeM{\ctx}{\ECPair{\ECMV_1}{\ECMV_2}}{\TProd{\TMV_1}{\TMV_2}}
} \\
\inferrule[MKAPair1]{
\matchedProd{\TMV}{\TMV_1}{\TMV_2} \\\\
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TMV_1} \\
\ctxAnaFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TMV_2}
}{
\ctxAnaFixedInto{\ctx}{\EPair{\EMV_1}{\EMV_2}}{\ECPair{\ECMV_1}{\ECMV_2}}{\TMV}
}
\inferrule[MAPair1]{
\matchedProd{\TMV}{\TMV_1}{\TMV_2} \\\\
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TMV_1} \\
\ctxAnaTypeM{\ctx}{\ECMV_2}{\TMV_2}
}{
\ctxAnaTypeM{\ctx}{\ECPair{\ECMV_1}{\ECMV_2}}{\TMV}
}
\end{mathpar}
However, as when analyzing a lambda abstraction against a non-matched arrow type, the type against which a pair is analyzed may not match any product type. We solve this by adding an error mark $\ECPairAnaNonMatchedProd{\ECMV_1}{\ECMV_2}$ and the corresponding rules:
%
\begin{mathpar}
\inferrule[MKAPair2]{
\notMatchedProd{\TMV} \\
\ctxAnaFixedInto{\ctx}{\EMV_1}{\ECMV_1}{\TUnknown} \\\\
\ctxAnaFixedInto{\ctx}{\EMV_2}{\ECMV_2}{\TUnknown}
}{
\ctxAnaFixedInto{\ctx}{\EPair{\EMV_1}{\EMV_2}}{\ECPairAnaNonMatchedProd{\ECMV_1}{\ECMV_2}}{\TMV}
}
\inferrule[MAPair2]{
\notMatchedProd{\TMV} \\
\ctxAnaTypeM{\ctx}{\ECMV_1}{\TUnknown} \\\\
\ctxAnaTypeM{\ctx}{\ECMV_2}{\TUnknown}
}{
\ctxAnaTypeM{\ctx}{\ECPairAnaNonMatchedProd{\ECMV_1}{\ECMV_2}}{\TMV}
}
\end{mathpar}
As the elimination form for products, projections are handled in a similar manner as applications.
In the interest of space, we give only the rules for the left projection operator; right projections are governed analogously.
%
\begin{mathpar}
\inferrule[USProjL]{
\ctxSynTypeU{\ctx}{\EMV}{\TMV} \\\\
\matchedProd{\TMV}{\TMV_1}{\TMV_2}
}{
\ctxSynTypeU{\ctx}{\EProjL{\EMV}}{\TMV_1}
}
\inferrule[MKSProjL1]{
\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV} \\\\
\matchedProd{\TMV}{\TMV_1}{\TMV_2}
}{
\ctxSynFixedInto{\ctx}{\EProjL{\EMV}}{\ECProjL{\ECMV}}{\TMV_1}
}
\inferrule[MSProjL1]{
\ctxSynTypeM{\ctx}{\ECMV}{\TMV} \\\\
\matchedProd{\TMV}{\TMV_1}{\TMV_2}
}{
\ctxSynTypeM{\ctx}{\ECProjL{\ECMV}}{\TMV_1}
}
\end{mathpar}
In the case that the subject of the projection does not synthesize a matched product type, we mark with an error, written $\ECProjLSynNonMatchedProd{\ECMV}$:
%
\begin{mathpar}
\inferrule[MKSProjL2]{
\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV} \\
\notMatchedProd{\TMV}
}{
\ctxSynFixedInto{\ctx}{\EProjL{\EMV}}{\ECProjLSynNonMatchedProd{\ECMV}}{\TUnknown}
}
\inferrule[MSProjL2]{
\ctxSynTypeM{\ctx}{\ECMV}{\TMV} \\
\notMatchedProd{\TMV}
}{
\ctxSynTypeM{\ctx}{\ECProjLSynNonMatchedProd{\ECMV}}{\TUnknown}
}
\end{mathpar}
\subsubsection{Holes}
For completeness, we finish the development of the marked lambda calculus on the extended GTLC with
the marking of empty holes, which are never marked (see Sec.~\ref{sec:thi} for marking unfillable holes using constraint solving).
%
\begin{mathpar}
\judgment{ }{
\ctxSynTypeU{\ctx}{\EEHole}{\TUnknown}
}{USHole}
\judgment{ }{
\ctxSynFixedInto{\ctx}{\EEHole}{\ECEHole}{\TUnknown}
}{MKSHole}
\judgment{ }{
\ctxSynTypeM{\ctx}{\ECEHole}{\TUnknown}
}{MSHole}
\end{mathpar}
\subsubsection{Additional Metatheorems}
To conclude this section, we present two more metatheorems that help ensure correctness of the
system. Although \cref{thm:calculus-marking-well-formedness} guarantees that marking does not change
the syntactic structure of a program, it makes no statement about the presence of error marks in the
resulting marked program.
\cref{thm:calculus-marking-well-ill-typed} establishes that well-typed expressions are left unmarked and ill-typed expressions have at least one mark.
\begin{theorem}[name=Marking of Well-Typed/Ill-Typed Expressions] \
\label{thm:calculus-marking-well-ill-typed}
\begin{enumerate}
\item \begin{enumerate}
\item If $\ctxSynTypeU{\ctx}{\EMV}{\TMV}$
and $\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$,
then $\markless{\ECMV}$.
\item If $\ctxAnaTypeU{\ctx}{\EMV}{\TMV}$
and $\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV}{\TMV}$,
then $\markless{\ECMV}$.
\end{enumerate}
\item \begin{enumerate}
\item If there does not exist $\TMV$
such that $\ctxSynTypeU{\ctx}{\EMV}{\TMV}$,
then for all $\ECMV$ and $\TMV'$
such that $\ctxSynFixedInto{\ctx}{\EMV}{\ECMV}{\TMV'}$,
it is not the case that $\markless{\ECMV}$.
\item If there does not exist $\TMV$
such that $\ctxAnaTypeU{\ctx}{\EMV}{\TMV}$,
then for all $\ECMV$ and $\TMV'$
such that $\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV}{\TMV'}$,
it is not the case that $\markless{\ECMV}$.
\end{enumerate}
\end{enumerate}
\end{theorem}
%
Finally, no less importantly, marking is deterministic. This is given by
\cref{thm:calculus-marking-unicity}.
%
\begin{theorem}[name=Marking Unicity] \
\label{thm:calculus-marking-unicity}
\begin{enumerate}
\item If $\ctxSynFixedInto{\ctx}{\EMV}{\ECMV_1}{\TMV_1}$
and $\ctxSynFixedInto{\ctx}{\EMV}{\ECMV_2}{\TMV_2}$,
then $\ECMV_1 = \ECMV_2$
and $\TMV_1 = \TMV_2$.
\item If $\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV_1}{\TMV}$
and $\ctxAnaFixedInto{\ctx}{\EMV}{\ECMV_2}{\TMV}$,
then $\ECMV_1 = \ECMV_2$.
\end{enumerate}
\end{theorem}
%
Together, totality and unicity give that marking may be implemented as a total function.
Indeed, given the algorithmic nature of bidirectional typing, it is fairly direct to implement these
rules.
\subsection{Agda Mechanization}
\label{sec:calculus-agda}
The semantics and metatheory presented above have been fully mechanized in the Agda proof assistant.
The mechanization \cite{zhao2023} additionally includes the decoupled Hazelnut action semantics described in
\cref{sec:calculus-hazelnut}.
Though the mechanization's documentation contains more detailed discussion regarding technical
decisions made therein, we highlight some important aspects here.
The standard approach of modeling judgments as inductive datatypes and rules as constructors for
those datatypes is taken.
By representing marked expressions with implicitly typed terms, we get part of
\cref{thm:calculus-marking-well-formedness} for free from the definition of marking.
For the convenience of readers interested in browsing the mechanization, as possible, rule names
match those presented here.
\input{let}
\input{polymorphism}
\section{Integrating Marking with Editing}
\label{sec:calculus-structured-editing}
\subsection{Hazel Implementation}
\label{sec:calculus-hazel}
We have implemented a marking system based on the marked lambda calculus as the foundation for a new version of Hazel \cite{hazel},
a live functional programming environment in which incomplete programs, i.e., programs that contain holes, may be type-checked, manipulated, and even executed.
In particular, we have implemented marking for all of the features in the previous section as well as Hazel's $n$-tuples, lists, algebraic datatypes, general pattern matching, strings, and explicit polymorphism (all following the same recipe we developed above).
Hazel is implemented in OCaml and compiles to Javascript via \li{js_of_ocaml} \cite{vouillon2014} for use in the browser.
The supplemental material contains a pre-built implementation.
The result of this effort is the first full-scale typed functional language equipped with a language server that solves the semantic gap problem: all of Hazel's semantic services are available as long as the program sketch is syntactically well-formed, which include type hints \cite{potter2020}, semantic navigation, semantic code completion \cite{potter2020,blinn2022}, contextualized documentation \cite{potter2022}, and, because Hazel is able to evaluate programs with empty and non-empty holes due to prior work \cite{omar2019}, even semantic services that require run-time information, like testing.
%
Hazel offers both a textual syntax, with explicit empty holes, and more interestingly,
a structure editor that is able to additionally offer partial syntactic error recovery.
In particular, the \li{tylr} editor uses a form of structured syntax error recovery that automatically insert empty holes to maintain syntactic well-formedness as long as matching delimiters are placed by the user \cite{moon2022,moon2023}. Efforts outside of the scope of this paper are underway to define syntactic error recovery mechanisms that can handle unmatched delimiters as well, which would achieve total syntax error recovery. In combination with our contributions, this would achieve the Hazel project's stated goal of ensuring that \emph{there are no meaningless editor states}.
\subsection{Fixing Holes in Hazelnut}
\label{sec:calculus-hazelnut}
Earlier versions of Hazel achieved total type error recovery by using a term-based structure editor, which maintained delimiter matching by construction, albeit at the cost of some syntactic rigidity.
To specify such a structure editor formally, \citet{omar2017b} introduced the Hazelnut action calculus, which operates over a small bidirectionally typed lambda calculus extended with \emph{holes} and a \emph{cursor}.
The synthetic action judgment, written $\ASEAction{\ctx}{\ZMV}{\TMV}{\ZMV'}{\TMV'}{\AMV}$, performs an edit action $\AMV$ on some \emph{zippered expression} $\ZMV$ (which is an expression with a superimposed cursor, denoted $\hat{\EMV}$ in the original work) that synthesizes type $\TMV$, producing some new $\ZMV'$ that synthesizes types $\TMV'$.
Type and binding information is propagated to the location of the cursor during these operations, allowing them to insert the necessary error marks (i.e. non-empty holes, in Hazelnut's parlance).
When, for example, wrapping an expression whose type is inconsistent with $\TNum$ in an arithmetic operation, the calculus inserts an error mark around that operand: