-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_KL_divergence.py
404 lines (290 loc) · 13.1 KB
/
compute_KL_divergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
from operator import itemgetter
from numpy import random, zeros
import numpy as np
from scipy.spatial.distance import cosine
from scipy.linalg import norm
from sklearn.linear_model import LinearRegression, Lasso
from math import log
import matplotlib.pyplot as plt
import pandas as pd
def compute_user_rank(user_item_ratings):
user_rank = {}
for user_id in user_item_ratings.keys():
for item_id in user_item_ratings[user_id]:
user_rank[user_id] = user_rank.get(user_id, 0.0) + 1.0
user_rank_list = []
for user_id in user_rank.keys():
user_rank_list.append((user_id, user_rank[user_id]))
user_rank_list = sorted(user_rank_list, key=itemgetter(1))
user_rank_dict = {}
for user_pair in user_rank_list:
user_rank_dict[user_pair[0]] = user_pair[1]
return user_rank_dict
def compute_item_rank(user_item_ratings):
item_rank = {}
for user_id in user_item_ratings.keys():
for item_id in user_item_ratings[user_id]:
item_rank[item_id] = item_rank.get(item_id, 0.0) + 1.0
item_rank_list = []
for item_id in item_rank.keys():
item_rank_list.append((item_id, item_rank[item_id]))
item_rank_list = sorted(item_rank_list, key=itemgetter(1))
item_rank_dict = {}
for item_pair in item_rank_list:
item_rank_dict[item_pair[0]] = item_pair[1]
return item_rank_dict
def optimize_function_err_fun(train_data_dict, test_data_dict, user_rank_dict, item_rank_dict, iter_no, eta, beta):
user_features = {}
item_features = {}
(user_coef, rank_list) = compute_alpha(train_data_dict, test_data_dict, item_rank_dict)
for x in range(0, iter_no):
print('Iteration # %s' % x)
user_id_list = random.random_sample(100) * train_data_dict.keys().__len__()
user_len = max(train_data_dict.keys()) + 1
item_len = max(item_rank_dict.keys()) + 1
u = random.random([user_len, 30])
v = random.random([item_len, 30])
user_repo = list(train_data_dict.keys())
for uid_id in user_id_list:
user_id = user_repo[int(uid_id)]
if train_data_dict[user_id].__len__() < 1:
continue
item_id_list = list(train_data_dict[user_id].keys())
sampled_item_id_list = random.random_sample(10) * item_id_list.__len__()
item_repo = train_data_dict[user_id].keys()
n = item_id_list.__len__() * 1.0
for iid in sampled_item_id_list:
item_id = item_id_list[int(iid)]
R_v = train_data_dict[user_id][item_id_list[int(iid)]]*1.0/5
t_0 = norm(u[user_id])
t_1 = norm(v[item_id])
t_2 = t_0 * t_1
t_3 = R_v / 5.0
t_4 = np.dot(u[user_id], v[item_id])
t_5 = t_4
t_6 = 1 + user_coef[user_id]*t_5
t_7 = beta * user_coef[user_id]
t_8 = 1/t_6
t_9 = 1.0/n
u_grad = -((2*(t_3-t_5/t_2))/t_2*v[item_id]-(2*t_4*(t_3-t_4/t_2))/(t_0**3*t_1)*u[user_id]+(t_7*(log(t_8)-log(t_9)))/t_6**2*v[item_id]+(t_7*(t_8-t_9))/t_6*v[item_id])
u[user_id] -= eta * u_grad
t_0 = norm(u[user_id])
t_1 = norm(v[item_id])
t_2 = t_0 * t_1
t_3 = np.dot(u[user_id], v[item_id])
t_4 = 2 * (R_v/5.0 - t_3/t_2)
t_5 = 1 + user_coef[user_id]*t_3
t_6 = beta * user_coef[user_id]
t_7 = 1/t_5
t_8 = 1.0/n
v_grad = -(t_4/t_2*u[user_id]-(t_3*t_4)/(t_0*t_1**3)*v[item_id]+(t_6*(log(t_7)-log(t_8)))/t_5**2*u[user_id]+(t_6*(t_7-t_8))/t_5*u[user_id])
v[item_id] -= eta * v_grad
user_features[user_id] = u[user_id]
item_features[item_id] = v[item_id]
return user_features, item_features
def compute_mf(train_data_dict, test_data_dict, item_rank_dict, eta):
user_len = max(train_data_dict.keys()) + 1
item_len = max(item_rank_dict.keys()) + 1
u = random.random([user_len, 30])
v = random.random([item_len, 30])
user_id_list = random.random_sample(100) * train_data_dict.keys().__len__()
user_repo = list(train_data_dict.keys())
user_features = {}
item_features = {}
for uid_id in user_id_list:
user_id = user_repo[int(uid_id)]
if train_data_dict[user_id].__len__() < 1:
continue
item_id_list = list(train_data_dict[user_id].keys())
sampled_item_id_list = random.random_sample(10) * item_id_list.__len__()
item_repo = train_data_dict[user_id].keys()
for iid in sampled_item_id_list:
item_id = item_id_list[int(iid)]
R_v = train_data_dict[user_id][item_id_list[int(iid)]]
u[user_id] += eta*2*(R_v - np.dot(u[user_id], v[item_id])) * v[item_id]
v[item_id] += eta*2*(R_v - np.dot(u[user_id], v[item_id])) * u[user_id]
user_features[user_id] = u[user_id]
item_features[item_id] = v[item_id]
pr_dict = {}
pr_list = []
mae = 0.0
total_no = 0.0
for user_id in test_data_dict.keys():
for item_id in test_data_dict[user_id]:
if user_id in user_features and item_id in item_features:
#print('########')
#print(u[user_id])
#print('--------')
#print(v[item_id])
#print('++++++++')
R_v = 5.0 * (np.dot(user_features[user_id], item_features[item_id])/(norm(user_features[user_id])*norm(item_features[item_id])))
pr_dict[item_id] = pr_dict.get(item_id, 0)+1
mae += abs(R_v - test_data_dict[user_id][item_id])
total_no += 1
for item_id in pr_dict.keys():
pr_list.append((item_id, pr_dict[item_id]))
pr_list_s = sorted(pr_list, key=itemgetter(1), reverse=True)
rank_list = []
iter_id = 0
rank_id = 1
while iter_id < pr_list_s.__len__():
rank_list.append(rank_id)
while iter_id+1 < pr_list_s.__len__() and pr_list_s[iter_id] == pr_list_s[iter_id+1]:
rank_list.append(rank_id)
iter_id += 1
rank_id += 1
iter_id += 1
DMF = 0.0
for rank_val in rank_list:
DMF += log(rank_val*1.0/rank_list[-1])
DMF = 1 + rank_list.__len__()/DMF
print('DMF:%s' % DMF)
return (mae/total_no, DMF)
def compute_alpha(train_data_dict, test_data_dict, item_rank_dict):
eta = 1e-4
user_len = max(train_data_dict.keys()) + 1
item_idx_list = list(item_rank_dict.keys())
item_len = item_idx_list.__len__()
u = random.random([user_len, 30])
v = random.random([item_len, 30])
user_id_list = random.random_sample(100) * train_data_dict.keys().__len__()
user_repo = list(train_data_dict.keys())
for uid_id in user_id_list:
user_id = user_repo[int(uid_id)]
if train_data_dict[user_id].__len__() < 1:
continue
item_id_list = list(train_data_dict[user_id].keys())
sampled_item_id_list = random.random_sample(10) * item_id_list.__len__()
item_repo = train_data_dict[user_id].keys()
for iid in sampled_item_id_list:
item_id = item_id_list[int(iid)]
R_v = train_data_dict[user_id][item_id_list[int(iid)]]
u[user_id] += eta*2*(R_v - np.dot(u[user_id], v[int(iid)])) * v[int(iid)]
v[int(iid)] += eta*2*(R_v - np.dot(u[user_id], v[int(iid)])) * u[user_id]
X = zeros([item_len, user_len])
Y = zeros([item_len, 1])
for id_idx in range(0, item_len):
Y[id_idx] = item_idx_list[id_idx]
for user_id in range(0, user_len):
X[id_idx][user_id] = np.dot(u[user_id], v[id_idx])
print('Computing Lasso ...')
LR = Lasso(alpha=1e-7, positive=True).fit(X, Y)
user_coef = LR.coef_
with open('USER_COEF.txt', 'w') as FILE:
for coef_val in user_coef:
FILE.write(str(coef_val)+'\n')
rank_list = {}
for item_id in range(0, item_len):
rank_list[item_idx_list[item_id]] = np.dot(X[item_id][:], user_coef)
print('Completing compute_alpha ...')
return (user_coef, rank_list)
def predict_mf(test_data_dict, total_item_list, u, v):
item_dict = {}
pr_dict = {}
pr_list = []
mae = 0.0
total_no = 0.0
for user_id in test_data_dict.keys():
for item_id in test_data_dict[user_id]:
if user_id in user_features and item_id in item_features:
R_v = 5.0 * (np.dot(u[user_id], v[item_id])/(norm(u[user_id])*norm(v[item_id])))
pr_dict[item_id] = pr_dict.get(item_id, 0)+1
mae += abs(R_v - test_data_dict[user_id][item_id])
total_no += 1
for item_id in pr_dict.keys():
pr_list.append((item_id, pr_dict[item_id]))
pr_list_s = sorted(pr_list, key=itemgetter(1), reverse=True)
rank_list = []
iter_id = 0
rank_id = 1
while iter_id < pr_list_s.__len__():
rank_list.append(rank_id)
while iter_id+1 < pr_list_s.__len__() and pr_list_s[iter_id] == pr_list_s[iter_id+1]:
rank_list.append(rank_id)
iter_id += 1
rank_id += 1
iter_id += 1
DME = 0.0
for rank_val in rank_list:
DME += log(rank_val*1.0/rank_list[-1])
DME = 1 + rank_list.__len__()/DME
print('DME: %s' % DME)
return (mae*1.0/total_no, DME)
if __name__ == '__main__':
input_file = 'ratings.dat'
user_item_ratings = {}
user_set = set([])
item_set = set([])
with open(input_file, 'r') as FILE:
for line in FILE:
data_rec = line.strip().split('::')
user_id = int(data_rec[0])
item_id = int(data_rec[1])
if user_id not in user_item_ratings:
user_item_ratings[user_id] = {}
user_item_ratings[user_id][item_id] = float(data_rec[2])
user_set.add(user_id)
item_set.add(item_id)
print('%s %s' % (user_set.__len__(), item_set.__len__()))
#raw_input('...')
train_set = {}
test_set = {}
train_set_list = []
test_set_list = []
train_set_dict = {}
test_set_dict = {}
for user_id in user_item_ratings.keys():
item_list = [item_id for item_id in user_item_ratings[user_id].keys()]
train_set.setdefault(user_id, [])
train_set_dict.setdefault(user_id, {})
test_set_dict.setdefault(user_id, {})
if item_list.__len__() > 8:
train_set[user_id] = item_list[:-4]
for item_id in item_list[:-4]:
train_set_list.append((user_id, item_id, user_item_ratings[user_id][item_id]))
train_set_dict[user_id][item_id] = user_item_ratings[user_id][item_id]
for x in range(-4, 0):
test_set_list.append((user_id, item_list[x], user_item_ratings[user_id][item_list[x]]))
test_set_dict[user_id][item_list[x]] = user_item_ratings[user_id][item_list[x]]
if item_list.__len__() > 4:
train_set[user_id] = item_list[:-2]
for item_id in item_list[:-2]:
train_set_list.append((user_id, item_id, user_item_ratings[user_id][item_id]))
train_set_dict[user_id][item_id] = user_item_ratings[user_id][item_id]
for x in range(-2, 0):
test_set_list.append((user_id, item_list[x], user_item_ratings[user_id][item_list[x]]))
test_set_dict[user_id][item_list[x]] = user_item_ratings[user_id][item_list[x]]
with open('train_set.txt', 'w') as FILE:
for data_rec in train_set_list:
FILE.write('%s\t%s\t%s\n'%(data_rec[0], data_rec[1], data_rec[2]))
with open('test_set.txt', 'w') as FILE:
for data_rec in test_set_list:
FILE.write('%s\t%s\t%s\n'%(data_rec[0], data_rec[1], data_rec[2]))
user_rank_dict = compute_user_rank(user_item_ratings)
item_rank_dict = compute_item_rank(user_item_ratings)
eta_list = [1e-5, 3e-5, 7e-5, 1e-4, 3e-4, 5e-4, 7e-4, 9e-4, 0.001]
mae_list_0 = []
mae_list_1 = []
DME_list_0 = []
DME_list_1 = []
for eta in eta_list :
user_features, item_features = optimize_function_err_fun(train_set_dict, test_set_dict, user_rank_dict, item_rank_dict, 100, 1e-4, eta)
(mae_0, DME_0) = predict_mf(test_set_dict, item_rank_dict.keys(), user_features, item_features)
(mae_1, DME_1) = compute_mf(train_set_dict, test_set_dict, item_rank_dict, eta)
mae_list_0.append(mae_0)
mae_list_1.append(mae_1)
DME_list_0.append(DME_0)
DME_list_1.append(DME_1)
plt_0, = plt.plot(eta_list, mae_list_0)
plt_1, = plt.plot(eta_list, mae_list_1)
plt.legend([plt_0, plt_1], ['KL-Mat', 'Vanila Matrix Factorization'], loc='best')
plt.xlabel('Regularization Coefficient')
plt.ylabel('MAE')
plt.show()
plt_0, = plt.plot(eta_list, DME_list_0)
plt_1, = plt.plot(eta_list, DME_list_1)
plt.legend([plt_0, plt_1], ['KL-Mat', 'Vanila Matrix Factorization'], loc='best')
plt.xlabel('Regularization Coefficient')
plt.ylabel('Degree of Matthew Effect')
plt.show()