-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_semseg.py
executable file
·225 lines (190 loc) · 10.7 KB
/
train_semseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2020. Hanchen Wang, [email protected]
# ref: https://github.com/charlesq34/pointnet/blob/master/sem_seg/train.py
# ref: https://github.com/AnTao97/dgcnn.pytorch/blob/master/main_semseg.py
# ref: https://github.com/yanx27/Pointnet_Pointnet2_pytorch/blob/master/train_semseg.py
import os, sys, torch, shutil, argparse, importlib
sys.path.append('utils')
sys.path.append('models')
from Torch_Utility import copy_parameters, weights_init, bn_momentum_adjust
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from torch.utils.tensorboard import SummaryWriter
from S3DISDataLoader import S3DISDataset_HDF5
from torch.utils.data import DataLoader
from TrainLogger import TrainLogger
from tqdm import tqdm
classes = ['ceiling', 'floor', 'wall', 'beam', 'column',
'window', 'door', 'table', 'chair', 'sofa',
'bookcase', 'board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
seg_label_to_cat[i] = cat
def parse_args():
parser = argparse.ArgumentParser(description='Point Cloud Semantic Segmentation')
parser.add_argument('--log_dir', type=str, help='log path [default: ]')
parser.add_argument('--gpu', type=str, default='0', help='GPU [default: 0]')
parser.add_argument('--mode', type=str, default='train', help='train or test')
parser.add_argument('--batch_size', type=int, default=24, help='batch size [default: 24]')
parser.add_argument('--test_area', type=int, default=5, help='test area, 1-6 [default: 5]')
parser.add_argument('--epoch', default=100, type=int, help='training epochs [default: 100]')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum [default: 0.9]')
parser.add_argument('--lr_decay', type=float, default=0.5, help='lr decay rate [default: 0.5]')
parser.add_argument('--restore', action='store_true', help='restore the weights [default: False]')
parser.add_argument('--restore_path', type=str, help='path to pre-saved model weights [default: ]')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate in FCs [default: 0.5]')
parser.add_argument('--bn_decay', action='store_true', help='use BN Momentum Decay [default: False]')
parser.add_argument('--xavier_init', action='store_true', help='Xavier weight init [default: False]')
parser.add_argument('--emb_dims', type=int, default=1024, help='embedding dimensions [default: 1024]')
parser.add_argument('--k', type=int, default=20, help='num of nearest neighbors to use [default: 20]')
parser.add_argument('--step_size', type=int, default=40, help='lr decay steps [default: every 40 epochs]')
parser.add_argument('--scheduler', type=str, default='cos', help='lr decay scheduler [default: cos, step]')
parser.add_argument('--model', type=str, default='pointnet_semseg', help='model [default: pointnet_semseg]')
parser.add_argument('--optimizer', type=str, default='adam', help='optimiser [default: adam, otherwise sgd]')
return parser.parse_args()
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
root = 'data/indoor3d_sem_seg_hdf5_data'
NUM_CLASSES = len(seg_label_to_cat)
TRAIN_DATASET = S3DISDataset_HDF5(root=root, split='train', test_area=args.test_area)
TEST_DATASET = S3DISDataset_HDF5(root=root, split='test', test_area=args.test_area)
trainDataLoader = DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4)
testDataLoader = DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4)
MyLogger = TrainLogger(args, name=args.model.upper(), subfold='semseg',
cls2name=class2label, filename=args.mode + '_log')
MyLogger.logger.info("The number of training data is: %d" % len(TRAIN_DATASET))
MyLogger.logger.info("The number of testing data is: %d" % len(TEST_DATASET))
''' === Model Loading === '''
MODEL = importlib.import_module(args.model)
shutil.copy(os.path.abspath(__file__), MyLogger.log_dir)
shutil.copy('./models/%s.py' % args.model, MyLogger.log_dir)
writer = SummaryWriter(os.path.join(MyLogger.experiment_dir, 'runs'))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classifier = MODEL.get_model(num_class=NUM_CLASSES, num_channel=9, args=args).to(device)
criterion = MODEL.get_loss().to(device)
classifier = torch.nn.DataParallel(classifier)
print('=' * 27)
print('Using %d GPU,' % torch.cuda.device_count(), 'Indices: %s' % args.gpu)
print('=' * 27)
if args.restore:
checkpoint = torch.load(args.restore_path)
classifier = copy_parameters(classifier, checkpoint, verbose=True)
MyLogger.logger.info('Use pre-trained weights from %s' % args.restore_path)
else:
MyLogger.logger.info('No pre-trained weights, start training from scratch...')
if args.xavier_init:
classifier = classifier.apply(weights_init)
MyLogger.logger.info("Using Xavier weight initialisation")
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-4)
MyLogger.logger.info("Using Adam optimiser")
else:
optimizer = torch.optim.SGD(
classifier.parameters(),
lr=args.lr * 100,
momentum=args.momentum)
MyLogger.logger.info("Using SGD optimiser")
# using the similar lr decay setting from
# https://github.com/charlesq34/pointnet/blob/master/sem_seg/train.py
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.5)
if args.scheduler == 'cos':
scheduler = CosineAnnealingLR(optimizer, T_max=args.epoch, eta_min=1e-3)
else:
scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.lr_decay)
LEARNING_RATE_CLIP = 1e-5
MOMENTUM_ORIGINAL = 0.1
MOMENTUM_DECAY = 0.5
MOMENTUM_DECAY_STEP = args.step_size
''' === Testing then Exit === '''
if args.mode == 'test':
with torch.no_grad():
classifier.eval()
MyLogger.epoch_init(training=False)
for points, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
points, target = points.transpose(2, 1).float().cuda(), target.view(-1, 1)[:, 0].long().cuda()
if args.model == 'pointnet_semseg':
seg_pred, trans_feat = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
loss = criterion(seg_pred, target, trans_feat)
else:
seg_pred = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
loss = criterion(seg_pred, target)
MyLogger.step_update(seg_pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=False, mode='semseg')
sys.exit("Test Finished")
for epoch in range(MyLogger.epoch, args.epoch + 1):
''' === Training === '''
# scheduler.step()
MyLogger.epoch_init()
for points, target in tqdm(trainDataLoader, total=len(trainDataLoader), smoothing=0.9):
writer.add_scalar('learning rate', scheduler.get_lr()[-1], MyLogger.step)
points, target = points.float().transpose(2, 1).cuda(), target.view(-1, 1)[:, 0].long().cuda()
classifier.train()
optimizer.zero_grad()
# pdb.set_trace()
if args.model == 'pointnet_semseg':
seg_pred, trans_feat = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
loss = criterion(seg_pred, target, trans_feat)
else:
seg_pred = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
loss = criterion(seg_pred, target)
loss.backward()
optimizer.step()
MyLogger.step_update(seg_pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=True, mode='semseg')
'''=== Evaluating ==='''
with torch.no_grad():
classifier.eval()
MyLogger.epoch_init(training=False)
for points, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
points, target = points.transpose(2, 1).float().cuda(), target.view(-1, 1)[:, 0].long().cuda()
if args.model == 'pointnet_semseg':
seg_pred, trans_feat = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
loss = criterion(seg_pred, target, trans_feat)
else:
seg_pred = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
loss = criterion(seg_pred, target)
MyLogger.step_update(seg_pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=False, mode='semseg')
if MyLogger.save_model:
state = {
'step': MyLogger.step,
'miou': MyLogger.best_miou,
'epoch': MyLogger.best_miou_epoch,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, MyLogger.savepath)
scheduler.step()
if args.scheduler == 'step':
for param_group in optimizer.param_groups:
if optimizer.param_groups[0]['lr'] < LEARNING_RATE_CLIP:
param_group['lr'] = LEARNING_RATE_CLIP
if args.bn_decay:
momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECAY ** (epoch // MOMENTUM_DECAY_STEP))
if momentum < 0.01:
momentum = 0.01
print('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x, momentum))
MyLogger.train_summary(mode='semseg')
if __name__ == '__main__':
args = parse_args()
main(args)