-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_partseg.py
executable file
·300 lines (256 loc) · 15.2 KB
/
train_partseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) 2020. Hanchen Wang, [email protected]
# Ref: https://github.com/yanx27/Pointnet_Pointnet2_pytorch/blob/master/train_partseg.py
import os, sys, torch, shutil, importlib, argparse, numpy as np
sys.path.append('utils')
sys.path.append('models')
from PC_Augmentation import random_scale_point_cloud, random_shift_point_cloud
from Torch_Utility import copy_parameters, weights_init, bn_momentum_adjust
from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR
from torch.utils.tensorboard import SummaryWriter
from ShapeNetDataLoader import PartNormalDataset
from torch.utils.data import DataLoader
from TrainLogger import TrainLogger
from tqdm import tqdm
seg_classes = {'Earphone': [16, 17, 18],
'Motorbike': [30, 31, 32, 33, 34, 35],
'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11],
'Laptop': [28, 29],
'Cap': [6, 7],
'Skateboard': [44, 45, 46],
'Mug': [36, 37],
'Guitar': [19, 20, 21],
'Bag': [4, 5],
'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49],
'Airplane': [0, 1, 2, 3],
'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15],
'Knife': [22, 23]}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ..., 49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
def parse_args():
parser = argparse.ArgumentParser('Model')
parser.add_argument('--log_dir', type=str, help='log folder [default: ]')
parser.add_argument('--gpu', type=str, default='0', help='GPU [default: 0]')
parser.add_argument('--mode', type=str, default='train', help='train or test')
parser.add_argument('--epoch', default=250, type=int, help=' epochs [default: 250]')
parser.add_argument('--batch_size', type=int, default=16, help='batch size [default: 16]')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum [default: 0.9]')
parser.add_argument('--restore_path', type=str, help='path to pretrained weights [default: ]')
parser.add_argument('--lr_decay', type=float, default=0.5, help='lr decay rate [default: 0.5]')
parser.add_argument('--num_point', type=int, default=2048, help='point number [default: 2048]')
parser.add_argument('--restore', action='store_true', help='using pre-trained [default: False]')
parser.add_argument('--use_sgd', action='store_true', help='use SGD optimiser [default: False]')
parser.add_argument('--data_aug', action='store_true', help='data augmentation [default: False]')
parser.add_argument('--scheduler', default='step', help='learning rate scheduler [default: step]')
parser.add_argument('--model', default='pointnet_partseg', help='model [default: pointnet_partseg]')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate in FCs [default: 0.5]')
parser.add_argument('--bn_decay', action='store_true', help='use BN nomentum decay [default: False]')
parser.add_argument('--xavier_init', action='store_true', help='Xavier weight init [default: False]')
parser.add_argument('--emb_dims', type=int, default=1024, help='embedding dimensions [default: 1024]')
parser.add_argument('--k', type=int, default=20, help='num of nearest neighbors to use [default: 20]')
parser.add_argument('--normal', action='store_true', default=False, help='use normal [default: False]')
parser.add_argument('--step_size', type=int, default=20, help='lr decay step [default: every 20 epochs]')
parser.add_argument('--num_votes', type=int, default=3, help='aggregate test predictions via vote [default: 3]')
return parser.parse_args()
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
def to_categorical(y, num_class):
""" 1-hot encodes a tensor """
new_y = torch.eye(num_class)[y.cpu().data.numpy(), ]
if y.is_cuda:
return new_y.cuda()
return new_y
''' === Set up Loggers and Load Data === '''
MyLogger = TrainLogger(args, name=args.model.upper(), subfold='partseg',
filename=args.mode + '_log', cls2name=seg_label_to_cat)
writer = SummaryWriter(os.path.join(MyLogger.experiment_dir, 'runs'))
root = 'data/shapenetcore_partanno_segmentation_benchmark_v0_normal/'
TRAIN_DATASET = PartNormalDataset(root=root, num_point=args.num_point, split='trainval', use_normal=args.normal)
TEST_DATASET = PartNormalDataset(root=root, num_point=args.num_point, split='test', use_normal=args.normal)
trainDataLoader = DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4)
testDataLoader = DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4)
num_classes, num_part = 16, 50
''' === Load Model and Backup Scripts === '''
channel_num = 6 if args.normal else 3
MODEL = importlib.import_module(args.model)
shutil.copy(os.path.abspath(__file__), MyLogger.log_dir)
shutil.copy('./models/%s.py' % args.model, MyLogger.log_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classifier = MODEL.get_model(part_num=num_part, num_channel=channel_num, args=args).cuda().to(device)
criterion = MODEL.get_loss().to(device)
classifier = torch.nn.DataParallel(classifier)
if args.restore:
checkpoint = torch.load(args.restore_path)
classifier = copy_parameters(classifier, checkpoint, verbose=True)
MyLogger.logger.info('Use pre-trained weights from %s' % args.restore_path)
else:
MyLogger.logger.info('No pre-trained weights, start training from scratch...')
if args.xavier_init:
classifier = classifier.apply(weights_init)
MyLogger.logger.info("Using Xavier weight initialisation")
if args.mode == 'test':
MyLogger.logger.info('\n\n')
MyLogger.logger.info('=' * 33)
MyLogger.logger.info('load parrameters from %s' % args.restore_path)
with torch.no_grad():
test_metrics = {}
total_correct, total_seen = 0, 0
total_seen_class = [0 for _ in range(num_part)]
total_correct_class = [0 for _ in range(num_part)]
shape_ious = {cat: [] for cat in seg_classes.keys()} # {shape: []}
for points, label, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
classifier.eval()
cur_batch_size, num_point, _ = points.size()
vote_pool = torch.zeros(cur_batch_size, num_point, num_part).cuda() # (batch, num point, num part)
points, label, target = points.transpose(2, 1).float().cuda(), label.long().cuda(), target.numpy()
''' === generate predictions from raw output (multiple via voting) === '''
for _ in range(args.num_votes):
if args.model == 'pointnet_partseg':
seg_pred, _ = classifier(points, to_categorical(label, num_classes))
else:
seg_pred = classifier(points, to_categorical(label, num_classes))
vote_pool += seg_pred # added on probability
seg_pred = vote_pool / args.num_votes
cur_pred_val_logits = seg_pred.cpu().data.numpy()
cur_pred_val = np.zeros((cur_batch_size, num_point)).astype(np.int32)
for i in range(cur_batch_size):
cat = seg_label_to_cat[target[i, 0]] # str, shape name
logits = cur_pred_val_logits[i, :, :] # array, (num point, num part)
cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
# only consider parts from that shape
''' === calculate accuracy === '''
total_correct += np.sum(cur_pred_val == target)
total_seen += (cur_batch_size * num_point)
for l in range(num_part):
total_seen_class[l] += np.sum(target == l)
total_correct_class[l] += (np.sum((cur_pred_val == l) & (target == l)))
''' === calculate iou === '''
for i in range(cur_batch_size):
segl = target[i, :] # array, (num point, )
segp = cur_pred_val[i, :] # array, (num point, )
cat = seg_label_to_cat[segl[0]] # str, shape name
part_ious = [0. for _ in range(len(seg_classes[cat]))] # parts belong to that shape
for l in seg_classes[cat]:
if (np.sum(segl == l) == 0) and (np.sum(segp == l) == 0): # no prediction or gt
part_ious[l - seg_classes[cat][0]] = 1.0
else:
iou = np.sum((segl == l) & (segp == l)) / float(np.sum((segl == l) | (segp == l)))
part_ious[l - seg_classes[cat][0]] = iou
shape_ious[cat].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
test_metrics['class_avg_iou'] = mean_shape_ious
test_metrics['instance_avg_iou'] = np.mean(all_shape_ious)
test_metrics['accuracy'] = total_correct / float(total_seen)
test_metrics['class_avg_accuracy'] = np.mean(
np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))
for cat in sorted(shape_ious.keys()):
MyLogger.logger.info('test mIoU of %-14s %f' % (cat, shape_ious[cat]))
MyLogger.logger.info('Accuracy is: %.5f' % test_metrics['accuracy'])
MyLogger.logger.info('Class avg accuracy is: %.5f' % test_metrics['class_avg_accuracy'])
MyLogger.logger.info('Class avg mIoU is: %.5f' % test_metrics['class_avg_iou'])
MyLogger.logger.info('Instance avg mIoU is: %.5f' % test_metrics['instance_avg_iou'])
sys.exit("Test Finished")
if not args.use_sgd:
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-4)
else:
optimizer = torch.optim.SGD(classifier.parameters(),
lr=args.lr * 100,
momentum=args.momentum,
weight_decay=1e-4)
if args.scheduler is 'step':
scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.lr_decay)
else:
scheduler = CosineAnnealingLR(optimizer, T_max=args.epoch, eta_min=1e-3)
LEARNING_RATE_CLIP = 1e-5
MOMENTUM_ORIGINAL = 0.1
MOMENTUM_DECAY = 0.5
MOMENTUM_DECAY_STEP = args.step_size
for epoch in range(MyLogger.epoch, args.epoch + 1):
MyLogger.epoch_init()
for points, label, target in tqdm(trainDataLoader, total=len(trainDataLoader), smoothing=0.9):
if args.data_aug:
points = points.data.numpy()
points[:, :, :3] = random_scale_point_cloud(points[:, :, 0:3])
points[:, :, :3] = random_shift_point_cloud(points[:, :, 0:3])
points = torch.Tensor(points)
points, label, target = points.transpose(2, 1).float().cuda(), label.long().cuda(), \
target.view(-1, 1)[:, 0].long().cuda()
classifier.train()
optimizer.zero_grad()
if args.model == 'pointnet_partseg':
seg_pred, trans_feat = classifier(points, to_categorical(label, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_part)
loss = criterion(seg_pred, target, trans_feat)
else:
seg_pred = classifier(points, to_categorical(label, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_part)
loss = criterion(seg_pred, target)
loss.backward()
optimizer.step()
MyLogger.step_update(seg_pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=True, mode='partseg')
'''=== Evaluating ==='''
with torch.no_grad():
classifier.eval()
MyLogger.epoch_init(training=False)
for points, label, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
cur_batch_size, NUM_POINT, _ = points.size()
points, label, target = points.transpose(2, 1).float().cuda(), label.long().cuda(), \
target.view(-1, 1)[:, 0].long().cuda()
if args.model == 'pointnet_partseg':
seg_pred, trans_feat = classifier(points, to_categorical(label, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_part)
loss = criterion(seg_pred, target, trans_feat)
else:
seg_pred = classifier(points, to_categorical(label, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_part)
loss = criterion(seg_pred, target)
MyLogger.step_update(seg_pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=False, mode='partseg')
if MyLogger.save_model:
state = {
'step': MyLogger.step,
'miou': MyLogger.best_miou,
'epoch': MyLogger.best_miou_epoch,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}
torch.save(state, MyLogger.savepath)
if epoch % 5 == 0:
state = {
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}
torch.save(state, MyLogger.savepath.replace('best_model', 'model_ep%d' % epoch))
scheduler.step()
if args.scheduler == 'step':
for param_group in optimizer.param_groups:
if optimizer.param_groups[0]['lr'] < LEARNING_RATE_CLIP:
param_group['lr'] = LEARNING_RATE_CLIP
if args.bn_decay:
momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECAY ** (epoch // MOMENTUM_DECAY_STEP))
if momentum < 0.01:
momentum = 0.01
print('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x, momentum))
if __name__ == '__main__':
args = parse_args()
main(args)