-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_cls.py
executable file
·210 lines (177 loc) · 10.2 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2020. Hanchen Wang, [email protected]
# Ref: https://github.com/WangYueFt/dgcnn/blob/master/pytorch/main.py
# Ref: https://github.com/yanx27/Pointnet_Pointnet2_pytorch/blob/master/train_cls.py
import os, sys, torch, shutil, importlib, argparse
sys.path.append('utils')
sys.path.append('models')
from PC_Augmentation import random_point_dropout, random_scale_point_cloud, random_shift_point_cloud
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from ModelNetDataLoader import General_CLSDataLoader_HDF5
from Torch_Utility import copy_parameters, seed_torch
from torch.utils.tensorboard import SummaryWriter
# from Inference_Timer import Inference_Timer
from torch.utils.data import DataLoader
from Dataset_Loc import Dataset_Loc
from TrainLogger import TrainLogger
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser('Point Cloud Classification')
''' === Training and Model === '''
parser.add_argument('--log_dir', type=str, help='log folder [default: ]')
parser.add_argument('--gpu', type=str, default='0', help='GPU [default: 0]')
parser.add_argument('--mode', type=str, default='train', help='train or test')
parser.add_argument('--epoch', type=int, default=200, help='epochs [default: 200]')
# parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)')
parser.add_argument('--batch_size', type=int, default=24, help='batch size [default: 24]')
parser.add_argument('--model', default='pointnet_cls', help='model [default: pointnet_cls]')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate [default: 0.5]')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum [default: 0.9]')
parser.add_argument('--lr_decay', type=float, default=0.5, help='lr decay rate [default: 0.5]')
parser.add_argument('--step_size', type=int, default=20, help='lr decay step [default: 20 eps]')
parser.add_argument('--num_point', type=int, default=1024, help='points number [default: 1024]')
parser.add_argument('--restore', action='store_true', help='using pre-trained [default: False]')
parser.add_argument('--restore_path', type=str, help="path to pretrained weights [default: None]")
parser.add_argument('--emb_dims', type=int, default=1024, help='dimension of embeddings [default: 1024]')
parser.add_argument('--k', type=int, default=20, help='number of nearest neighbors to use [default: 20]')
parser.add_argument('--use_sgd', action='store_true', default=False, help='use SGD optimiser [default: False]')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate [default: 0.001, 0.1 if using sgd]')
parser.add_argument('--scheduler', type=str, default='step', help='lr decay scheduler [default: step, or cos]')
''' === Dataset === '''
parser.add_argument('--partial', action='store_true', help='partial objects [default: False]')
parser.add_argument('--bn', action='store_true', help='with background noise [default: False]')
parser.add_argument('--data_aug', action='store_true', help='data Augmentation [default: False]')
parser.add_argument('--dataset', type=str, default='modelnet40', help='dataset [default: modelnet40]')
parser.add_argument('--fname', type=str, help='filename, used in ScanObjectNN or fewer data [default:]')
return parser.parse_args()
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# seed_torch(args.seed)
''' === Set up Loggers and Load Data === '''
MyLogger = TrainLogger(args, name=args.model.upper(), subfold='cls', filename=args.mode + '_log')
writer = SummaryWriter(os.path.join(MyLogger.experiment_dir, 'runs'))
MyLogger.logger.info('Load dataset %s' % args.dataset)
NUM_CLASSES, TRAIN_FILES, TEST_FILES = Dataset_Loc(dataset=args.dataset, fname=args.fname,
partial=args.partial, bn=args.bn)
TRAIN_DATASET = General_CLSDataLoader_HDF5(file_list=TRAIN_FILES, num_point=1024)
TEST_DATASET = General_CLSDataLoader_HDF5(file_list=TEST_FILES, num_point=1024)
trainDataLoader = DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
testDataLoader = DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4)
''' === Load Model and Backup Scripts === '''
MODEL = importlib.import_module(args.model)
shutil.copy(os.path.abspath(__file__), MyLogger.log_dir)
shutil.copy('./models/%s.py' % args.model, MyLogger.log_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classifier = MODEL.get_model(args=args, num_channel=3, num_class=NUM_CLASSES).to(device)
criterion = MODEL.get_loss().to(device)
classifier = torch.nn.DataParallel(classifier)
# nn.DataParallel has its own issues (slow, memory expensive),
# here are some advanced solutions: https://zhuanlan.zhihu.com/p/145427849
print('=' * 27)
print('Using %d GPU,' % torch.cuda.device_count(), 'Indices: %s' % args.gpu)
print('=' * 27)
''' === Restore Model from Pre-Trained Checkpoints: OcCo/Jigsaw etc === '''
if args.restore:
checkpoint = torch.load(args.restore_path)
classifier = copy_parameters(classifier, checkpoint, verbose=True)
MyLogger.logger.info('Use pre-trained weights from %s' % args.restore_path)
else:
MyLogger.logger.info('No pre-trained weights, start training from scratch...')
if not args.use_sgd:
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-4
)
else:
optimizer = torch.optim.SGD(classifier.parameters(),
lr=args.lr * 100,
momentum=args.momentum,
weight_decay=1e-4)
if args.scheduler == 'cos':
scheduler = CosineAnnealingLR(optimizer, T_max=args.epoch, eta_min=1e-3)
else:
scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.lr_decay)
LEARNING_RATE_CLIP = 0.01 * args.lr
if args.mode == 'test':
with torch.no_grad():
classifier.eval()
MyLogger.epoch_init(training=False)
for points, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
points, target = points.float().transpose(2, 1).cuda(), target.long().cuda()
if args.model == 'pointnet_cls':
pred, trans_feat = classifier(points)
loss = criterion(pred, target, trans_feat)
else:
pred = classifier(points)
loss = criterion(pred, target)
MyLogger.step_update(pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=False)
sys.exit("Test Finished")
for epoch in range(MyLogger.epoch, args.epoch + 1):
''' === Training === '''
MyLogger.epoch_init()
for points, target in tqdm(trainDataLoader, total=len(trainDataLoader), smoothing=0.9):
writer.add_scalar('Learning Rate', scheduler.get_lr()[-1], MyLogger.step)
# Augmentation, might bring performance gains
if args.data_aug:
points = random_point_dropout(points.data.numpy())
points[:, :, :3] = random_scale_point_cloud(points[:, :, :3])
points[:, :, :3] = random_shift_point_cloud(points[:, :, :3])
points = torch.Tensor(points)
points, target = points.transpose(2, 1).float().cuda(), target.long().cuda()
# FP and BP
classifier.train()
optimizer.zero_grad()
if args.model == 'pointnet_cls':
pred, trans_feat = classifier(points)
loss = criterion(pred, target, trans_feat)
else:
pred = classifier(points)
loss = criterion(pred, target)
loss.backward()
optimizer.step()
MyLogger.step_update(pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=True)
''' === Validating === '''
with torch.no_grad():
classifier.eval()
MyLogger.epoch_init(training=False)
for points, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
points, target = points.float().transpose(2, 1).cuda(), target.long().cuda()
if args.model == 'pointnet_cls':
pred, trans_feat = classifier(points)
loss = criterion(pred, target, trans_feat)
else:
pred = classifier(points)
loss = criterion(pred, target)
MyLogger.step_update(pred.data.max(1)[1].cpu().numpy(),
target.long().cpu().numpy(),
loss.cpu().detach().numpy())
MyLogger.epoch_summary(writer=writer, training=False)
if MyLogger.save_model:
state = {
'step': MyLogger.step,
'epoch': MyLogger.best_instance_epoch,
'instance_acc': MyLogger.best_instance_acc,
'best_class_acc': MyLogger.best_class_acc,
'best_class_epoch': MyLogger.best_class_epoch,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, MyLogger.savepath)
scheduler.step()
if args.scheduler == 'step':
for param_group in optimizer.param_groups:
if optimizer.param_groups[0]['lr'] < LEARNING_RATE_CLIP:
param_group['lr'] = LEARNING_RATE_CLIP
MyLogger.train_summary()
if __name__ == '__main__':
args = parse_args()
main(args)