-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwildfire_cnn.R
110 lines (87 loc) · 3.04 KB
/
wildfire_cnn.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
devtools::install_github("rstudio/tensorflow")
library(tensorflow)
install_tensorflow(method = "conda", version="nightly")
#install_tensorflow() #<- apparently this works now?!??
library(keras)
use_condaenv('r-tensorflow')
data <- read.csv("/home/hannah/Wildfire-NN-ML/ML_Data/ml_dly_cal_r1.sel.csv")[,c(1:3,6,8,10,14,25,28,32,34:41)]
data <- data[,-c(1,2,3)]
for (i in 1:(ncol(data)-1)){
data[,i] <- normalize(data[,i])
}
predictVar = which(names(data)=="fpc1")
for (i in 1:nrow(data)){ #differentiate between "lots" of fires and less fires
if (data[i,predictVar]>=5){
data[i,predictVar] <- 1
} else {
data[i,predictVar] <- 0
}
}
len <- round(nrow(data)*0.75)
train_x <- data[1:len, 1:(ncol(data)-1)]
train_y <- data[1:len, ncol(data)]
test_x <- data[-(1:len), 1:(ncol(data)-1)]
test_y <- data[-(1:len), ncol(data)]
train_x <- array( unlist(train_x), dim=c(dim(train_x),1) )
test_x <- array( unlist(test_x), dim=c(dim(test_x),1) )
#a linear stack of layers
model <- keras_model_sequential()
#configuring the Model
model %>%
#defining a 2-D convolution layer
layer_conv_1d(
filter = ncol(train_x),
kernel_size = 1,
padding = "same",
input_shape = dim(train_x)[-1]
) %>%
layer_activation("relu") %>%
#another 2-D convolution layer
layer_conv_1d(filter = ncol(train_x) , kernel_size = 1) %>%
layer_activation("relu") %>%
#Defining a Pooling layer which reduces the dimentions of the features map
#and reduces the computational
#complexity of the model
layer_max_pooling_1d(pool_size = 2) %>%
#dropout layer to avoid overfitting
layer_dropout(0.25) %>%
layer_conv_1d(filter = ncol(train_x), kernel_size = 1, padding = "same") %>%
layer_activation("relu") %>%
layer_conv_1d(filter = ncol(train_x), kernel_size = 1) %>%
layer_activation("relu") %>%
layer_max_pooling_1d(pool_size = 2) %>%
layer_dropout(0.25) %>%
#flatten the input
layer_flatten() %>%
layer_dense(512) %>%
layer_activation("relu") %>%
layer_dropout(0.5) %>%
#output layer-10 classes-10 units
layer_dense(2) %>%
#applying softmax nonlinear activation function to the output layer
#to calculate cross-entropy
layer_activation("softmax")
#for computing Probabilities of classes-"logit(log probabilities)
opt<-optimizer_adam( lr= 0.00001 , decay = 1e-6 ) #lr = learning rate (too small makes it really chaotic)
#lr-learning rate , decay - learning rate decay over each update
model %>%
compile(loss="sparse_categorical_crossentropy",
optimizer=opt,metrics = "accuracy")
#Summary of the Model and its Architecture
summary(model)
#TRAINING PROCESS OF THE MODEL
model %>% fit(train_x, as.matrix(train_y) ,batch_size=32,
epochs=80,validation_data = list(test_x, as.matrix(test_y)),
shuffle=TRUE)
predictions <- predict_classes(model, test_x)
probs <- predict_proba(model, test_x)
resize_data <- function(df){
new_arr <- array(dim=c(nrow(df),8,6))
for (i in 1:nrow(df)){
for (j in 1:ncol(df)){
if (j<=8){
new_arr[i,j,] <- df[i,j]
}
}
}
}