-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_svm.R
36 lines (24 loc) · 970 Bytes
/
learning_svm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#install.packages("e1071")
library("e1071")
load(file = "ESL.mixture.rda")
names(ESL.mixture)
attach(ESL.mixture)
plot(x,col=y+1)
#y response data frame --> factor
dat <- data.frame(y=factor(y),x)
fit = svm(factor(y) ~ ., data=dat, scale=FALSE, kernel="radial", cost=5)
xgrid = expand.grid(X1=px1, X2=px2)
ygrid = predict(fit, xgrid)
plot(xgrid, col = as.numeric(ygrid), pch = 20, cex = 0.2)
points(x, col = y+1, pch = 19)
#=========================================================
func = predict(fit, xgrid, decision.values=TRUE)
func = attributes(func)$decision
xgrid = expand.grid(X1 = px1, X2 = px2)
ygird = predict(fit, xgrid)
plot(xgrid, col = as.numeric(ygrid), pch = 20, cex = 0.2)
points(x, col = y+1, pch = 19)
#boundary decided by SVM
contour(px1, px2, matrix(func, 69, 99), level = 0, add = TRUE)
#Bayes decision boundary
contour(px1, px2, matrix(func, 69, 99), level = 0.5, add = TRUE, col = "blue", lwd = 2)