diff --git a/src/autoschedulers/mullapudi2016/AutoSchedule.cpp b/src/autoschedulers/mullapudi2016/AutoSchedule.cpp index 40a1292c0d8d..cc2f4270ec75 100644 --- a/src/autoschedulers/mullapudi2016/AutoSchedule.cpp +++ b/src/autoschedulers/mullapudi2016/AutoSchedule.cpp @@ -1154,7 +1154,11 @@ class GPUTilingDedup { VarOrRVar inner{var + "_i", v.is_rvar}; split_t entry{v, outer, inner, factor, TailStrategy::Auto}; - parallelize.try_emplace(var, entry); + const auto [_, insertion_happened] = parallelize.try_emplace(var, entry); + if (!insertion_happened) { + return std::nullopt; + } + return entry; } @@ -1163,15 +1167,16 @@ class GPUTilingDedup { * @param[in] vo split into outer dimension * @param[in] vi split into inner dimension * @param[in] factor the partition size. + * @return whether the vectorize() request is accepted or rejected. */ - void can_vectorize(const VarOrRVar &v, const VarOrRVar &vo, const VarOrRVar &vi, const Expr &factor) { + bool can_vectorize(const VarOrRVar &v, const VarOrRVar &vo, const VarOrRVar &vi, const Expr &factor) { const auto &var = v.name(); if (is_inner(var)) { // For CPU, it makes sense to further split the inner loop and run // SIMD instruction. But this operation is redundant in GPU as the // gpu_block is already specified. - return; + return false; } debug(2) << f.name() << ".vectorize(" << v.name() << "," << factor << ")\n"; @@ -1180,10 +1185,11 @@ class GPUTilingDedup { // vectorized dimension is treated as a thread in GPU. No need to // further split it to match the natural_vector_size() of CPUs. inner_vars.emplace(v.name()); - return; + return false; } parallelize.try_emplace(var, split_t{v, vo, vi, factor, TailStrategy::Auto}); + return true; } /** Mark the current dimension is already split by Mullapudi2016's @@ -2880,11 +2886,11 @@ std::optional> Partitioner::vectorize_stage(const Gro internal_assert(is_rvar == dims[vec_dim_index].is_rvar()); VarOrRVar vec_var(vec_dim_name, is_rvar); - auto [inner, outer] = [&]() -> std::pair { + auto [inner, outer, accepted] = [&]() -> std::tuple { if (t.has_gpu_feature()) { VarOrRVar inner{vec_var.name() + "_vi", vec_var.is_rvar}, outer{vec_var.name() + "_vo", vec_var.is_rvar}; - gpu_tiling.can_vectorize(vec_var, outer, inner, vec_len); - return {inner, outer}; + const bool accepted = gpu_tiling.can_vectorize(vec_var, outer, inner, vec_len); + return {inner, outer, accepted}; } auto split_vars = split_dim(g, f_handle, stage_num, def, is_group_output, vec_var, vec_len, @@ -2894,7 +2900,7 @@ std::optional> Partitioner::vectorize_stage(const Gro sched.push_schedule(f_handle.name(), stage_num, "vectorize(" + split_vars.first.name() + ")", {split_vars.first.name()}); - return split_vars; + return std::make_tuple(split_vars.first, split_vars.second, true); }(); if (is_rvar) { @@ -2912,6 +2918,10 @@ std::optional> Partitioner::vectorize_stage(const Gro << "\" in function \"" << f_handle.name() << "\"\n"; } + if (!accepted) { + return std::nullopt; + } + return make_pair(inner, outer); } @@ -3284,7 +3294,8 @@ void Partitioner::generate_group_cpu_schedule( } // Find the level at which group members will be computed. - int tile_inner_index = dims.size() - outer_dims.size() - 1; + internal_assert(dims.size() > outer_dims.size()); + const auto tile_inner_index = dims.size() - outer_dims.size() - 1; VarOrRVar tile_inner_var(Var::outermost()); if (!outer_dims.empty()) { string var_name = get_base_name(dims[tile_inner_index].var);