-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdash_app.py
152 lines (134 loc) · 4.46 KB
/
dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import ast
import dash
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_cytoscape as cyto
import dash_html_components as html
import dash_table
from dash.dependencies import Input, Output
import networkx as nx
import pandas as pd
import numpy as np
import graph_converter as gc
path = "../graphs/smaller_subgraph.graphml"
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
navbar = dbc.NavbarSimple(
children=[
dbc.NavItem(dbc.NavLink("Link", href="#")),
dbc.DropdownMenu(
nav=True,
in_navbar=True,
label="Menu",
children=[
dbc.DropdownMenuItem("Entry 1"),
dbc.DropdownMenuItem("Entry 2"),
dbc.DropdownMenuItem(divider=True),
dbc.DropdownMenuItem("Entry 3"),
],
),
],
brand="RefSeq Genome Browser",
brand_href="#",
sticky="top",
)
cluster_buttons = dbc.FormGroup(
[
dbc.Label("Clustering Method"),
dbc.RadioItems(
options=[
{"label": "Connectivity", "value": "connectivity"},
{"label": "Option 2", "value": 2},
{"label": "Disabled option", "value": 3, "disabled": True},
],
value=1,
id="radioitems-input",
),
]
)
graph = nx.read_graphml(path)
subgraph_nodes = ['n{}'.format(n) for n in range(0, 100)]
subgraph = graph.subgraph(subgraph_nodes)
#def serialize_graph(network):
# json_dict = nx.node_link_data()
# json_str =
def assign_clusters(subgraph, n_subcluser):
for node in subgraph.nodes():
subgraph.nodes[node]['subcluster'] = np.random.randint(n_subcluser)
return subgraph
def make_clustered_network(graph):
"""Takes a network of genomes and returns a network of clusters with genomes as node attributes."""
g = assign_clusters(graph, 10)
cluster_dict = gc.make_cluster_dict(g)
cluster_network = gc.make_cluster_network(cluster_dict)
return cluster_network
def add_edges(graph, n_max_connections = 5) :
"""
Add edges to the graph
:param graph:
:return:
"""
for i in range(1, graph.number_of_nodes()):
for n in range(1, n_max_connections):
ni = np.random.randint(1, graph.number_of_nodes())
if i != ni : cluster_graph.add_edge(i,ni)
return graph
cluster_graph = make_clustered_network(subgraph)
cluster_graph = add_edges(cluster_graph)
cyto_elements = gc.make_cyto_elements(cluster_graph)
graph = cyto.Cytoscape(
id='network',
layout={'name': 'cose'},
style={'width': '100%', 'height': '400px', 'line-color':'red'},
elements=cyto_elements
)
app.layout = dbc.Container(
[
dbc.Row(
[
dbc.Col(
[
html.H4("Filter"),
html.Br(),
dbc.Input(id="input", placeholder="Find a genome...", type="text"),
html.Br(),
cluster_buttons
],
width=2
),
dbc.Col(
[
html.H4("Network Explorer"),
graph
],
width=7
),
dbc.Col([html.H4("Subcluster Details"),
html.Div(id='node_genomes')],
width=3)
]
)
],
className="mt-4",
)
def make_genome_table(network, node):
"""Takes a network node and returns a table with its genomes."""
print(network.nodes[node])
genomes = network.nodes[node]['genomes'].split(', ')
table_df = pd.DataFrame(genomes)
table_df.rename(columns={table_df.columns[0]: "Genome"}, inplace=True)
data_table = dash_table.DataTable(
data=table_df.to_dict('records'),
columns=[{'name': i, 'id': i} for i in table_df.columns]
)
return data_table
@app.callback(
Output('node_genomes', 'children'),
[Input('network', 'tapNodeData')])
def get_node_genomes(node_data):
if node_data:
print(node_data['id'])
cluster_graph = make_clustered_network(subgraph)
table = make_genome_table(cluster_graph, int(node_data['id']))
return table
if __name__ == "__main__":
app.run_server(debug=True)