-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimage_classifier_experiment.py
executable file
·55 lines (40 loc) · 2.23 KB
/
image_classifier_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import configparser
import json
import pickle
from data_prep.image_loader import ImageLoader
from modelling.local_model_store import LocalModelStore
from experiment_setup.dataset_filters_setup import setup_dataset_filter
from experiment_setup.dataloaders_setup import dataloaders_setup
from experiment_setup.trainer_setup import get_trainer
from experiment_setup.pairs_behaviour_setup import setup_pairs_reps_behaviour
if __name__ == '__main__':
config = configparser.ConfigParser(interpolation=configparser.ExtendedInterpolation())
config.read('./objects_experiment_config.cfg')
im_size = int(config['DATASET']['image_size'])
post_crop_size = int(config['DATASET']['post_crop_size'])
dataset_means = json.loads(config['DATASET']['dataset_means'])
dataset_stds = json.loads(config['DATASET']['dataset_stds'])
image_loader = ImageLoader(im_size, post_crop_size, dataset_means, dataset_stds)
filter = setup_dataset_filter(config)
processed_dataset, num_classes = filter.process_dataset(
config['DATASET']['raw_dataset_path'],
config['DATASET']['dataset_name'])
dataloaders = dataloaders_setup(config, processed_dataset, image_loader)
model_store = LocalModelStore(config['MODELLING']['architecture'],
config['GENERAL']['root_dir'],
config['GENERAL']['experiment_name'])
start_epoch = int(config['MODELLING']['start_epoch'])
end_epoch = int(config['MODELLING']['end_epoch'])
trainer = get_trainer(config, num_classes, start_epoch)
trainer.train_model(start_epoch, end_epoch, dataloaders)
reps_behaviour_extractor = setup_pairs_reps_behaviour(config, image_loader)
output = reps_behaviour_extractor.test_behaviour(trainer.model)
results_path = os.path.join(config['REP_BEHAVIOUR']['reps_results_path'], 'comparisons.pkl')
print('Saving results in ', results_path)
os.makedirs(config['REP_BEHAVIOUR']['reps_results_path'], exist_ok=True)
with open(results_path, 'wb') as f:
pickle.dump(output, f)
print('done')
# TODO: Add option to start from existing models.
# TODO: Divide the analysis from training and from the data prep - use dir tree as indicator to the model training