forked from facebookresearch/deep_bisim4control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
169 lines (120 loc) · 5.05 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
def tie_weights(src, trg):
assert type(src) == type(trg)
trg.weight = src.weight
trg.bias = src.bias
class PixelEncoder(nn.Module):
"""Convolutional encoder of pixels observations."""
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32, stride=None):
super().__init__()
assert len(obs_shape) == 3
self.feature_dim = feature_dim
self.num_layers = num_layers
self.convs = nn.ModuleList(
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
)
for i in range(num_layers - 1):
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
out_dim = {2: 39, 4: 35, 6: 31}[num_layers]
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim)
self.ln = nn.LayerNorm(self.feature_dim)
self.outputs = dict()
def reparameterize(self, mu, logstd):
std = torch.exp(logstd)
eps = torch.randn_like(std)
return mu + eps * std
def forward_conv(self, obs):
obs = obs / 255.
self.outputs['obs'] = obs
conv = torch.relu(self.convs[0](obs))
self.outputs['conv1'] = conv
for i in range(1, self.num_layers):
conv = torch.relu(self.convs[i](conv))
self.outputs['conv%s' % (i + 1)] = conv
h = conv.view(conv.size(0), -1)
return h
def forward(self, obs, detach=False):
h = self.forward_conv(obs)
if detach:
h = h.detach()
h_fc = self.fc(h)
self.outputs['fc'] = h_fc
out = self.ln(h_fc)
self.outputs['ln'] = out
return out
def copy_conv_weights_from(self, source):
"""Tie convolutional layers"""
# only tie conv layers
for i in range(self.num_layers):
tie_weights(src=source.convs[i], trg=self.convs[i])
def log(self, L, step, log_freq):
if step % log_freq != 0:
return
for k, v in self.outputs.items():
L.log_histogram('train_encoder/%s_hist' % k, v, step)
if len(v.shape) > 2:
L.log_image('train_encoder/%s_img' % k, v[0], step)
for i in range(self.num_layers):
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
L.log_param('train_encoder/fc', self.fc, step)
L.log_param('train_encoder/ln', self.ln, step)
class PixelEncoderCarla096(PixelEncoder):
"""Convolutional encoder of pixels observations."""
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32, stride=1):
super(PixelEncoder, self).__init__()
assert len(obs_shape) == 3
self.feature_dim = feature_dim
self.num_layers = num_layers
self.convs = nn.ModuleList(
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
)
for i in range(num_layers - 1):
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=stride))
out_dims = 100 # if defaults change, adjust this as needed
self.fc = nn.Linear(num_filters * out_dims, self.feature_dim)
self.ln = nn.LayerNorm(self.feature_dim)
self.outputs = dict()
class PixelEncoderCarla098(PixelEncoder):
"""Convolutional encoder of pixels observations."""
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32, stride=1):
super(PixelEncoder, self).__init__()
assert len(obs_shape) == 3
self.feature_dim = feature_dim
self.num_layers = num_layers
self.convs = nn.ModuleList()
self.convs.append(nn.Conv2d(obs_shape[0], 64, 5, stride=2))
self.convs.append(nn.Conv2d(64, 128, 3, stride=2))
self.convs.append(nn.Conv2d(128, 256, 3, stride=2))
self.convs.append(nn.Conv2d(256, 256, 3, stride=2))
out_dims = 56 # 3 cameras
# out_dims = 100 # 5 cameras
self.fc = nn.Linear(256 * out_dims, self.feature_dim)
self.ln = nn.LayerNorm(self.feature_dim)
self.outputs = dict()
class IdentityEncoder(nn.Module):
def __init__(self, obs_shape, feature_dim, num_layers, num_filters):
super().__init__()
assert len(obs_shape) == 1
self.feature_dim = obs_shape[0]
def forward(self, obs, detach=False):
return obs
def copy_conv_weights_from(self, source):
pass
def log(self, L, step, log_freq):
pass
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder,
'pixelCarla096': PixelEncoderCarla096,
'pixelCarla098': PixelEncoderCarla098,
'identity': IdentityEncoder}
def make_encoder(
encoder_type, obs_shape, feature_dim, num_layers, num_filters, stride
):
assert encoder_type in _AVAILABLE_ENCODERS
return _AVAILABLE_ENCODERS[encoder_type](
obs_shape, feature_dim, num_layers, num_filters, stride
)