-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpi.c
172 lines (147 loc) · 3.32 KB
/
pi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
* Computation of the n'th decimal digit of \pi with very little memory.
* Written by Fabrice Bellard on January 8, 1997.
*
* We use a slightly modified version of the method described by Simon
* Plouffe in "On the Computation of the n'th decimal digit of various
* transcendental numbers" (November 1996). We have modified the algorithm
* to get a running time of O(n^2) instead of O(n^3log(n)^3).
*
* This program uses mostly integer arithmetic. It may be slow on some
* hardwares where integer multiplications and divisons must be done
* by software. We have supposed that 'int' has a size of 32 bits. If
* your compiler supports 'long long' integers of 64 bits, you may use
* the integer version of 'mul_mod' (see HAS_LONG_LONG).
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
/* uncomment the following line to use 'long long' integers */
/* #define HAS_LONG_LONG */
#ifdef HAS_LONG_LONG
#define mul_mod(a,b,m) (( (long long) (a) * (long long) (b) ) % (m))
#else
#define mul_mod(a,b,m) fmod( (double) a * (double) b, m)
#endif
/* return the inverse of x mod y */
int inv_mod(int x, int y)
{
int q, u, v, a, c, t;
u = x;
v = y;
c = 1;
a = 0;
do {
q = v / u;
t = c;
c = a - q * c;
a = t;
t = u;
u = v - q * u;
v = t;
} while (u != 0);
a = a % y;
if (a < 0)
a = y + a;
return a;
}
/* return (a^b) mod m */
int pow_mod(int a, int b, int m)
{
int r, aa;
r = 1;
aa = a;
while (1) {
if (b & 1)
r = mul_mod(r, aa, m);
b = b >> 1;
if (b == 0)
break;
aa = mul_mod(aa, aa, m);
}
return r;
}
/* return true if n is prime */
int is_prime(int n)
{
int r, i;
if ((n % 2) == 0)
return 0;
r = (int) (sqrt(n));
for (i = 3; i <= r; i += 2)
if ((n % i) == 0)
return 0;
return 1;
}
/* return the prime number immediatly after n */
int next_prime(int n)
{
do {
n++;
} while (!is_prime(n));
return n;
}
int main(int argc, char *argv[])
{
int av, a, vmax, N, n, num, den, k, kq, kq2, t, v, s, i;
double sum;
if (argc < 2 || (n = atoi(argv[1])) <= 0) {
printf("This program computes the n'th decimal digit of \\pi\n"
"usage: pi n , where n is the digit you want\n");
exit(1);
}
N = (int) ((n + 20) * log(10) / log(2));
sum = 0;
for (a = 3; a <= (2 * N); a = next_prime(a)) {
vmax = (int) (log(2 * N) / log(a));
av = 1;
for (i = 0; i < vmax; i++)
av = av * a;
s = 0;
num = 1;
den = 1;
v = 0;
kq = 1;
kq2 = 1;
for (k = 1; k <= N; k++) {
t = k;
if (kq >= a) {
do {
t = t / a;
v--;
} while ((t % a) == 0);
kq = 0;
}
kq++;
num = mul_mod(num, t, av);
t = (2 * k - 1);
if (kq2 >= a) {
if (kq2 == a) {
do {
t = t / a;
v++;
} while ((t % a) == 0);
}
kq2 -= a;
}
den = mul_mod(den, t, av);
kq2 += 2;
if (v > 0) {
t = inv_mod(den, av);
t = mul_mod(t, num, av);
t = mul_mod(t, k, av);
for (i = v; i < vmax; i++)
t = mul_mod(t, a, av);
s += t;
if (s >= av)
s -= av;
}
}
t = pow_mod(10, n - 1, av);
s = mul_mod(s, t, av);
sum = fmod(sum + (double) s / (double) av, 1.0);
}
printf("Decimal digits of pi at position %d: %09d\n", n,
(int) (sum * 1e9));
return 0;
}