-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGraficas_tesis_2.nb
13955 lines (13849 loc) · 773 KB
/
Graficas_tesis_2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 791311, 13947]
NotebookOptionsPosition[ 783289, 13806]
NotebookOutlinePosition[ 783690, 13822]
CellTagsIndexPosition[ 783647, 13819]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PD1", "[",
RowBox[{"x_", ",", "y_", ",", "z_", ",", "d_"}], "]"}], "=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}],
RowBox[{"Sin", "[", "y", "]"}]}], ")"}], "^", "2"}], "+",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "z", "]"}], "^", "2"}],
RowBox[{
RowBox[{"Sin", "[", "x", "]"}], "^", "2"}], " ",
RowBox[{
RowBox[{"Cos", "[", "y", "]"}], "^", "2"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", " ", "x"}], "]"}],
RowBox[{"Sin", "[",
RowBox[{"2", "y"}], "]"}],
RowBox[{"Cos", "[", "z", "]"}],
RowBox[{"Cos", "[", "d", "]"}]}], ")"}], "/", "2"}]}]}]], "Input",
CellChangeTimes->{{3.783477424347314*^9, 3.7834775817112246`*^9}, {
3.7834780478508973`*^9, 3.783478071204782*^9}, {3.7834782361034393`*^9,
3.783478317854561*^9}, {3.783478425222328*^9, 3.7834784522520876`*^9}, {
3.7834784840757647`*^9, 3.7834785511885643`*^9}, 3.783630450073453*^9},
CellLabel->"In[1]:=",ExpressionUUID->"be3883b6-6d64-46cd-9134-1851cff1151f"],
Cell[BoxData[
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "[", "y", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Cos", "[", "z", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "x", "]"}], "2"]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "[", "x", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "y", "]"}], "2"]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"Cos", "[", "d", "]"}], " ",
RowBox[{"Cos", "[", "z", "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"2", " ", "x"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"2", " ", "y"}], "]"}]}]}]], "Output",
CellChangeTimes->{
3.7834775830389876`*^9, 3.7834783194321823`*^9, {3.7834784103507357`*^9,
3.783478453329916*^9}, {3.7834785239587593`*^9, 3.7834785532663207`*^9},
3.7836304605881367`*^9, 3.791809187219695*^9, 3.7920859064192266`*^9,
3.795978020924427*^9, 3.8025424601935234`*^9, 3.802551680726183*^9},
CellLabel->"Out[1]=",ExpressionUUID->"f80d94d5-7222-4308-9b12-678991eb43ff"]
}, Open ]],
Cell[BoxData[
RowBox[{"<<", "MaTeX`"}]], "Input",
CellChangeTimes->{{3.792085935841639*^9, 3.79208594671769*^9}},
CellLabel->"In[9]:=",ExpressionUUID->"4634954d-c148-4246-93db-60ec352d7f07"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"PD1", "[",
RowBox[{"x", ",", "y", ",", "angulo", " ", ",", "dif"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",", "Bold", ",", "16"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
SubscriptBox["\[Theta]", "2"], ",", "Bold", ",", "16"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"P", ",", "Bold", ",", "16"}], "]"}]}], "}"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Directive", "[", " ", "14", "]"}]}], ",", " ",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"angulo", " ", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"dif", ",", "0", ",",
RowBox[{"2", " ", "Pi"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7834777392671185`*^9, 3.783477748296213*^9}, {
3.7834778260435286`*^9, 3.7834778577235117`*^9}, {3.783477902307407*^9,
3.78347792547381*^9}, {3.7834779690570693`*^9, 3.7834779758679647`*^9}, {
3.783478326149344*^9, 3.783478343682125*^9}, {3.783478382819397*^9,
3.783478383647441*^9}, 3.783478430288501*^9, 3.7836304527106857`*^9, {
3.7836305149117804`*^9, 3.783630545022278*^9}, {3.783630628079935*^9,
3.7836307234308863`*^9}, {3.7836307838382545`*^9,
3.7836309183165007`*^9}, {3.7836309502500725`*^9, 3.783630956875348*^9}, {
3.7918092038909473`*^9, 3.791809218791057*^9}, {3.7918094353251963`*^9,
3.791809544920487*^9}, {3.792086105790935*^9, 3.792086127965249*^9}, {
3.792086400318571*^9, 3.792086404467803*^9}, {3.8025425516914887`*^9,
3.802542572956485*^9}, {3.8025426122138405`*^9, 3.8025426648159113`*^9}, {
3.8025427472669325`*^9, 3.802542777513646*^9}, {3.8025428192212133`*^9,
3.8025428940808787`*^9}, {3.802543657909151*^9, 3.8025436673112917`*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"38580ff5-f3c4-4ded-9f50-04c2c0902571"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`angulo$$ = 0., $CellContext`dif$$ =
3.1779144424329475`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{
Hold[$CellContext`angulo$$], 0, 2 Pi}, {
Hold[$CellContext`dif$$], 0, 2 Pi}}, Typeset`size$$ = {
360., {162., 166.59276653598624`}}, Typeset`update$$ = 0,
Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`angulo$$ = 0, $CellContext`dif$$ = 0},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Plot3D[
$CellContext`PD1[$CellContext`x, $CellContext`y, \
$CellContext`angulo$$, $CellContext`dif$$], {$CellContext`x, 0, 2
Pi}, {$CellContext`y, 0, 2 Pi}, AxesLabel -> {
Style[
Subscript[$CellContext`\[Theta], 1], Bold, 16],
Style[
Subscript[$CellContext`\[Theta], 2], Bold, 16],
Style[$CellContext`P, Bold, 16]}, TicksStyle -> Directive[14],
Ticks -> {{0, Pi/2, Pi, 3 (Pi/2), 2 Pi}, {
0, Pi/2, Pi, 3 (Pi/2), 2 Pi}, {0, 0.5, 1}}],
"Specifications" :> {{$CellContext`angulo$$, 0, 2
Pi}, {$CellContext`dif$$, 0, 2 Pi}}, "Options" :> {},
"DefaultOptions" :> {}],
ImageSizeCache->{651., {192., 198.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{
3.7834778647842007`*^9, {3.7834779286916323`*^9, 3.783477939251632*^9}, {
3.783477977242627*^9, 3.783477981741602*^9}, {3.7834783461346207`*^9,
3.7834783849907165`*^9}, {3.7834784209575977`*^9, 3.783478431694418*^9}, {
3.7834785802014685`*^9, 3.783478598448222*^9}, {3.783630466565116*^9,
3.7836304812488623`*^9}, 3.7836305366177125`*^9, {3.783630819732233*^9,
3.783630839995025*^9}, 3.7836309212456646`*^9, {3.7836309602473288`*^9,
3.783630986000436*^9}, 3.7836315106223574`*^9, 3.791809194343843*^9, {
3.791809547123537*^9, 3.791809553785932*^9}, 3.7920861191058598`*^9,
3.79208643348626*^9, 3.79208938609579*^9, {3.7959780398918495`*^9,
3.7959780492138786`*^9}, 3.8025424681394033`*^9, 3.8025425743365088`*^9,
3.802542633007321*^9, {3.802542760547011*^9, 3.8025427783533783`*^9}, {
3.8025428387782416`*^9, 3.802542900979466*^9}, {3.8025436683748507`*^9,
3.8025436710212755`*^9}, {3.802543756812199*^9, 3.802543760640256*^9}},
CellLabel->"Out[16]=",ExpressionUUID->"bb9c52cb-c0e2-446f-98bc-4fb7ec5acc54"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PD2", "[",
RowBox[{"x_", ",", "y_", ",", "z_", ",", "d_"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}],
RowBox[{"Cos", "[", "y", "]"}]}], ")"}], "^", "2"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[", "z", "]"}],
RowBox[{"Sin", "[", "x", "]"}],
RowBox[{"Sin", "[", "y", "]"}]}], ")"}], "^", "2"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", " ", "x"}], "]"}],
RowBox[{"Sin", "[",
RowBox[{"2", "y"}], "]"}],
RowBox[{"Cos", "[", "z", "]"}],
RowBox[{"Cos", "[", "d", "]"}]}], ")"}], "/", "2"}]}]}]], "Input",
CellChangeTimes->{{3.7834789085170946`*^9, 3.783479025796075*^9}, {
3.783631103247775*^9, 3.783631151398962*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"c0898fcc-cb0b-433f-9587-bde447a612de"],
Cell[BoxData[
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "[", "x", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Cos", "[", "y", "]"}], "2"]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "[", "z", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "x", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "y", "]"}], "2"]}], "-",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"Cos", "[", "d", "]"}], " ",
RowBox[{"Cos", "[", "z", "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"2", " ", "x"}], "]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"2", " ", "y"}], "]"}]}]}]], "Output",
CellChangeTimes->{3.7834790290047235`*^9, 3.783630439765148*^9,
3.783631153242032*^9, 3.792089529797825*^9, 3.7959780681288867`*^9,
3.80254331770121*^9},
CellLabel->"Out[10]=",ExpressionUUID->"2302a4f2-956e-4649-9034-f816ca2355ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"PD2", "[",
RowBox[{"x", ",", "y", ",", "z", ",", "dif"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",", "Bold", ",", "16"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
SubscriptBox["\[Theta]", "2"], ",", "Bold", ",", "16"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"P", ",", "Bold", ",", "16"}], "]"}]}], "}"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Directive", "[", " ", "14", "]"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"dif", ",", "0", ",",
RowBox[{"2", " ", "Pi"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7834790431404305`*^9, 3.783479048095213*^9}, {
3.7920895806748457`*^9, 3.792089583635167*^9}, 3.8025433399940777`*^9, {
3.802543837523588*^9, 3.802543845125171*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"8ecb1e18-377b-42df-b561-3a9c2f0df6df"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`dif$$ = Pi, $CellContext`z$$ =
Rational[1, 3] Pi, Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{
Hold[$CellContext`z$$], 0, 2 Pi}, {
Hold[$CellContext`dif$$], 0, 2 Pi}}, Typeset`size$$ = {
360., {160., 165.9522737469435}}, Typeset`update$$ = 0,
Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`dif$$ = 0, $CellContext`z$$ = 0},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Plot3D[
$CellContext`PD2[$CellContext`x, $CellContext`y, $CellContext`z$$, \
$CellContext`dif$$], {$CellContext`x, 0, 2 Pi}, {$CellContext`y, 0, 2 Pi},
AxesLabel -> {
Style[
Subscript[$CellContext`\[Theta], 1], Bold, 16],
Style[
Subscript[$CellContext`\[Theta], 2], Bold, 16],
Style[$CellContext`P, Bold, 16]}, TicksStyle -> Directive[14],
Ticks -> {{0, Pi/2, Pi, 3 (Pi/2), 2 Pi}, {
0, Pi/2, Pi, 3 (Pi/2), 2 Pi}, {0, 0.5, 1}}],
"Specifications" :> {{$CellContext`z$$, 0, 2 Pi}, {$CellContext`dif$$,
0, 2 Pi}}, "Options" :> {}, "DefaultOptions" :> {}],
ImageSizeCache->{636., {190., 196.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{{3.7834790503865805`*^9, 3.7834790716718826`*^9}, {
3.7836311557942057`*^9, 3.783631161435114*^9}, {3.792089534004477*^9,
3.7920895368397427`*^9}, {3.792089585347568*^9, 3.79208958994315*^9},
3.7959780720011377`*^9, {3.8025433426010265`*^9, 3.8025433603624983`*^9}, {
3.802543429750544*^9, 3.8025434341459007`*^9}, {3.802543846236827*^9,
3.8025438486662674`*^9}},
CellLabel->"Out[17]=",ExpressionUUID->"7d5edf60-e1f2-4db0-a549-8227c3324d7d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Pabs", "[",
RowBox[{"x_", ",", "z_"}], "]"}], "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Sin", "[", "z", "]"}],
RowBox[{"Sin", "[", "x", "]"}]}], ")"}], "^", "2"}]}]], "Input",
CellChangeTimes->{{3.7834791078123627`*^9, 3.7834791182068195`*^9}, {
3.7834792805499697`*^9, 3.7834793030081973`*^9}, {3.7836318978593965`*^9,
3.783631899909912*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"726aa3b2-dbc0-4aa6-8e44-b5512630a3a3"],
Cell[BoxData[
RowBox[{
SuperscriptBox[
RowBox[{"Sin", "[", "x", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "z", "]"}], "2"]}]], "Output",
CellChangeTimes->{3.7834793060083447`*^9, 3.7836311821357355`*^9,
3.7836319010528545`*^9, 3.792089702279541*^9, 3.8025434795411634`*^9,
3.8025517026113057`*^9},
CellLabel->"Out[2]=",ExpressionUUID->"977bbf2d-a229-4e5c-a33a-16f2db158e67"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Pabs", "[",
RowBox[{"x", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",",
RowBox[{"2", " ", "Pi"}]}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",", "Bold", ",", "16"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
SubscriptBox["\[Theta]", "o"], ",", "Bold", ",", "16"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"P", ",", "Bold", ",", "16"}], "]"}]}], "}"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Directive", "[", " ", "14", "]"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "Pi", ",",
RowBox[{"3",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{"2", "Pi"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}]}],
"]"}]], "Input",
CellChangeTimes->{{3.7834793276607127`*^9, 3.7834794067088466`*^9}, {
3.78363190309938*^9, 3.7836319104523106`*^9}, {3.792089728943613*^9,
3.792089754537972*^9}, {3.8025434872157784`*^9, 3.8025434896441984`*^9}, {
3.802543888105609*^9, 3.8025438964004145`*^9}, {3.8025442532376013`*^9,
3.8025442652241983`*^9}, {3.802551692387924*^9, 3.8025516965891666`*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"ead3e5c6-8ca9-4611-a944-21dd27e16fdd"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJyNnXeUVMXz9glKzjmKBJEMAqIkd4iScxZFECSDEv3iEkREWJYoCgiiJAOI
iAoCkkGSSBLJGSVJFiUI+LvjPp/aoc7hvO/+M2eeqa2urq6uru7bVTdvh95N
OiVKkCBB6hQJEiQOPmvumPR5g8dmPsfn7jWzRkzP9UWFCXe3HHh8+ZEo8DeW
bJk6q9UTleu9u+9snuUXDV97dt6yk02rVC5Ua+7i/TF/GT5qcf1x06/VqTy/
3ou98yy/a/iJoYufCuMfFBrzwbd/JgyBD80w7tyJgM/++Z3774951PCJp2rc
mxm0m6149Wb/5E1ueMtEK+pdfW5xudaLHi+TZ3kqw8eI/uep90flLZTO8Gjx
v3Swxxvf/pne8GOSJ3XOw51rrMloeKzkL962dsv9MZkN367+1v/o+5pdW2Q1
fL700/vYE+X+yZvd8Hbjfn4nrE++o1f0yXc+9zy/r2bZJ2ZHoWfwZ4v2v9mr
/6oo9Az+RPND5+qf3RSFnsGPlc37YRhHz+ATf134fs+AD3oG/25497Slg3bR
M3jyp1om2du4eHn0DL5I9OgZfKz4o2fwo5IHPYMXkvzoGby++ouewe9JP+gZ
vMz4zdPC+kTP6A/7hA4cffLd6BeN+3zp+f2mZ/ACBw5PHDbllOkZvNj8G43D
OHoGX/dU+9FLAj7oGTxr3WovdQ/aRc/gH3355ec7tz9vegZPI3r0DL5K/NEz
eFHJg57Bn5T86Bl8t/qLnsGHSD/oGbz55n7Lw/pEz+iJ+W7jKhz75P/B0Sff
+Zzy96ZTe85dND3bOOTrOjSMo2fwKuPe/2ZowAc9g5dZPjdX3aBd9Axe68Kz
CZO91cT0DF5M9OgZPEr80TN4HcmDnsGnS370DF5a/UXP4C9IP+gZvHe78ePD
+jT/In3gP9EzOPMdPYNjn/A1+5X8fOezRcOUuSL1DF77la/6ROoZPGb2Hz/X
idAz+K5bM9cljdAz+NuiR8+2Pog/egZvJnnQM3gjyY+ewSuov+gZPNPTcfpB
z+Abiv9ZOlLP9Jv1CD2D4z/RMzjzHT2DY5+0B44++c5nxXVlun0X4TfAP308
+m7XCL8B3v35QzE7IvwG+EzRo2fwZ8QfPYPXkjzoGby65EfP4HvUX/QMvl/6
Qc/gKa63PX8iwm/QP9Z39AzOeoSewfGf6Bmc+Y6ewbFPk084+uQ7n2cSJTxQ
MmIdBH/z+yGv74pYB8FPih49g88Wf/QMPkryoGfwcpIfPYMXU3/RM/hx6Qc9
gxdfWf3+zIh1kH4QL6FncNZ39AzOeoSewfGf6Bmc+Y6ewbFP5ANHn3znc+WK
yVNSfv19afQM3lf06Bm8s/ijZ/Adkgc9g9eV/OgZ/Cv1Fz2DN5B+0DP46bPv
1g/rEz0j7xhnz+CLnD2Dp3H2DF7M2TP4286ewWc6ewY/6ewZvK+zZz6POHsG
n+bsGXy4s2fwks6ewfM7ewY/5OwZ/Elnz8gV7fwz+Fjnn8FXOf8MHuX8s+0b
nH8Gf8b5Z/DZzj+Dd3b+GXya8898lnX+GbyG88/gVZx/Bt/p/DP4HuefwZM5
/0z7x1y8AX7UxRvgRV28AV7HxRvgzVy8AV7LxRvgo1y8Ab7DxRvgw128AV7D
xRt8NnXxBngDF2+Al3fxBnhGF2+Ar3PxBu3EuvjZ4koXP4M/6eJn8OkufgZv
5OJn8OoufgYv5+Jn8LoufgYv6eJn8CoufgZv4OJnPme6+Bm8rIufwV9y8TN4
Xxc/w2+72w+C13f7QfDdbj8IXtrtB8EruP0g+B63HwQv5vaD4F+5/SB4frcf
BN/p9oPg5d1+ELys2w/yecrtB8Hfc/tB8A5uP2hxtzvfAL/nzjfAh7jzDfAX
3PkGOPE8erb4yJ1vgB935xvgDdz5Bvghd74Bvsedb4Az39Ez+EvufAP8PXe+
Eb8vfPB8A7yTO9/gd86X0DM45yHoGZz9u+0zhbPfRM/g7I/QMzjxPHo2u9B6
jZ7BiZfQMzjrO3oGZz1Cz+D4T/QMznxHz+DYJ3oER5/Wf/x029sjw/rcNjx3
kQMxv0fxmfOnKQMPt9wQdfbHzXu+/fOa4YennLqYrfTeqAFnc32Wt1CCEPiY
rj3ahPGlXW+/U2NNYsNz7mmS4lDAZ9DVcfkWj0hjeFbhLy5fMuxC6vSGjxaf
jypOapdmXibDf1O7q6ITNPzktSyGl5WcfEde5OQ7n3NrbP3qRubfTU7wvv1H
9M4a0CMneG/hyAleZfaxzGE+yAP+l9pFHvSEfvjOZ7nEN6L/jJAH/FrjNEez
RMgDfkk4+gGv5+QBn6d2kYd2GBfkBkcP/D848vCdz9Q3Un90IGJ8wZMLR2/g
V5z84NFqF/nBy0pO5KedrE5+8N5OfvBLTn7w5E5+Ph918oP/4eQHf8PJD17K
yQ8/7Bz5wbEr5AS/4uwBHHn4zmcZ2RXygM9x9kA/fnPzGryekwc82s0XcPTA
dxtnzTvkAb/v5gu/l3X+B/wvJyf4POd/jI/zP+ClnP8Bn+P8D/h953/4rC85
s59duCLf8u32uaTHiWS7M3e050DgJT7du6NJ/ySV6S/4N40P9Lq25D3TA+vb
iPM/zsi08hvTA/SV5i3o1mzyXMPtucaQQ2/3G78hquu2YRP+yXvb6At0Orz+
8TZfGE47u7Z0eDb3yQOmH+hj58++cyWQBxz+gyfer5AxkAe9QV8+Q89fmwby
gEO/ete/f/UN5Bl8J/9r0QczhLw84F6eY6t6PVe6Ujajvyl9sm6B/7LpxM6w
PvkOH/SJHODok3UfvEu+7HVWz9tv8ZXhNXctatdth9kb+q7m5gVxR8HKK469
FNDf+uPXjl1bJDU+ZXa2bXMxkOfZXt9UG3spheFPCidOAB+e71KTDIGcrPvg
0399eXpYTtZ98DSVM+duH7SL3SLnQjfvkDOP6NEb9NgVegP3dgX+2MV2F3bd
Pm/f+R0cPfN7jw/y7xjz9Tmj47Pf3X+Dvyumf+jzNI/9dPS646Z/6NfMuV88
zB/9g884MalDzsB+0D98ZnY5nqth0C/0Dz5ROPoH33Oq5ON9IuzW9xc7p91V
kofxgj558wT5Y4P+wsf3l3GEPkP/C/nHBP1lHKEvrHYZR/Crmi+MIzjzC/sA
Z36BMz7YP3Ey9HV3z57wUrfLNn6MA/bP/0NfYUfWQmF6vkPPePGd/0teLkvO
sD0wXvzf8Z+LVMgRyM94ge8Ujl8Cn6JxB4f/rImxY1bOi98nQv+s5GQcketp
rZuMI/QNpQfG0feL8aLdAbJz/Bh83tC4MA/h0zrRzMoxwbgzLswD/A/jAn2l
69d7h/kzLtAzX0wO0Xs9g2e8+8m7DSLmBXgS4exTwGtcilo7KuCPnmn3rfb9
X38xkBM9Q59M7aJne/4iPugZ+ij1C72BD9H6gt6Y9/hb9AuOHwCn39gVfMHR
A9/h8++7T565EPhnvvM7OHrj9+vC0Rv4cOkH+/Fygns5sSvwz+Sv0A98dmu9
xj9AX1/rC3YFXsbh9IP1CLuCHv8JDj3+0+aV8J1Oz+DYFXKDozfsinb/cTj0
l4VjV9BnEH9w6B8Vjp69nOgZ/EP1C32Ch5ze7LmA1mv0A846gn7oh/dX0H/z
1xPX0kXEV+Clajaf9HrEeuT54P/Bid9Yx8GJ3/AP4PhJ5ic485pxRK6n3b4V
e8fOGQ/4/OPmCzjjSD/B0QP+AXzfc3uPrIyIf8Cflh9gHJGzjtsXI2eM/Cp6
g544Fr2BE8cyjrZvkP9n3BkfH/9An1T+ED7Q+/gHevwk+ofexz/gPv6BTwbn
58GZF+gf3Nub7y/f+d3HP/z+nPw5dL6/jCP0PbUOMo7Q+/gH3Mc/4D7+Affx
jz1HUFzNOgu9j3+Qi7ia8YXexz/QIz/jSLusd4wXfHz8A+7jH3DvT+DPfGFd
Nv/n4h/kZL7w/9D7+Mf3i+/8XybFvaxT/J+Pf/i/5Ip7GRfsgn0N4wJ9evFn
XKAnfmZc7JxM8Rh6Bv/M7QvA8f/4C/AnFV+hZ9rF/6Bn6PurXfQMPXaOvqD3
egMfrX2Z3YfTPGAfZ/sQ4cwLcPihf+wQnPgK/dj5htY7/Az0xBvoDXrWR3sO
LRx/a/7CyQnu5aT/4OiB7/BJ3SRuv893fgfHP4DfdOcz4P/T+Qzf+azQM46e
75xDPLb5wfMH+HHOg/5ZT84k3bJ2bbYt1l+Pwx8+yGPnvNynkP3w3IF5067B
84/NrPFceTu/Ez3zi3nEvEni5hG/gyM/OP4QecDZj2An4Afkf5DTzuezNmpf
eHpDu8cC3s3NF/hUcOuIl4f+guMfsAfwpfLz6J3+oX/kwH/48wq7dyf/yfMg
fl+7t+rOVQEf+gtetm3MOzsGNrXnbuDLRU9/4U+cQH99uzzfgU+eZHHyIw/j
84zWceQB338/e3ShQP/wAb+sOMf0pfFkHGmPduiv8RVOu3yHzw+K6/jO7+DI
ye/Fhs0+NT2wZ+wEfJ7iVfTj5cEewE8oDqe/8FmoeBg7gf4TxfPMK+RifmEn
4Ngz+gFn3NGP3bOT/pEDnP6yvoAXFI6dgP8qPujBt4sewM9JTvoLPlL9Qn7s
FPuEv8fpl93bUbwKX/qB/MgDPesp9kb/KrjzDca/m5uP4MQz9pxMOOcP6Bkc
+0FO2kWf0IEncecY/J7EzVMvD/0FJx5A/+AjdP5m5+zi5/0S8UJy55/BidOw
Y/h4vwTu/RK490vw9/G8b5f5xe/eL6EP5qPdvxSOfcIH/ILOn7ETe04of44e
+D/axR7A8W/IAx/mO3YCPf4BOaFnvjB+4Iwj/ffy0B9w+sV3+GzRcwqLw/Q7
OPEGcQjPQfhOHEF8gt7s+cvfo0tszPa5zR/wVeeXHt4Q4Hy3/AXREx+CN2r0
5a1VAU4cCB4SDj3rV7XWB+dF0oOXFY7c4GkvxMkDX/jRLnTg8Kdf4FWEY6/g
TcUH/nbO4/iDl3X8wUs7/uDVxQd9mr1Iz8gBXsXpBxz+0NNOU6d/u+cm3OJg
4QM1jpZHod/RM3Tg0I9KNbZt6UrJQsmSlltfY82fUW8nydQv5vjIqC3julZs
8UvKUEzKK0PHXroT9cbgXv82ee+HKOj4P+jn1Z54d8ew9CHwLh/F/jM6wPl/
+MHnx5h//3i5XsYQ+CtDni3RNMD5f/jBBzr+D/paozPM6triZlSaW2lzHoz5
NSrd1ju7Wgb4091q3ZjyaoYQeO21pWaH8c/r/1N3Y9IU1t+ukh86+MGny0+P
9fzktSQh8B5qF5z+va1+ISf07UX/QfH31tffmtXoh0oe+vvT2J9eWjziflR3
9Rc5wRsJhy/tIw98wZGH/6cd+KMfT49+wXuJf/MFS08XLp3JxjdGekOPyIs+
kRN9oAfkgZ5+Md7g9Z2c3n6QB/reapfv8IMP4ws/7IF+gqMHcPSBHpADeuRh
fKGvJftBX8gb4+QER37GEX7YCXzB4c/6xTisT3wz65OtGpdHzxYHnp24smCA
0x74ZtHzHb2NEH3RlQOHFFy+MorPviXOxFaeVsDWX/xfBZ0zgBPvrNW6zPoI
fQ3t98GhX6l1s2CDOiuyLMoWot1HS8a1i37ob58nkuw9XfCi4djdsNsLp/9e
5orpDfqlo7Yl/i2gt3ES/ekxH+8K0+MficvecucSrCf95D/pD/1GD7QH/+/U
Lt/5PKl2GS/wQ9X79I7sl/nhzitfDdPznf+bfGphVJgee4NP/9NfNszRZrTZ
G3hL4Yw3+D61i317fWI/4CudPpFruNM/ch4Rf8YbvWEn2CH02C365HfsnPbo
d7tlnxcI9wucflcVTn/hg50jJ3wGSj/g8GktHP7wmyD9g5t/0HjBB/oD0gM4
9OgNe7PzeNkVuN1Dv/BgXMd8Yn6hN/gzXxg/cMYXvYNPdv1CXuQExy4GiT96
hA/jgh7B/biAo0++e33SHjjtIh+fv2t+8Z3/Wy27xQ7RG/4H+4AeP4lfYBzw
D4yTnYtrvPBf+DP8GH4E+n4ubrf4TuPL//M5VXyI9xj/NYo/GRcf/xAH2j5A
7aIf6NNrfYGOduDP8yzmbx33PIvfwdmH8ntpnSMR30I/sm/GvbXuz7Rzf+hf
c8+PoC+mcwa+ww8+dg9D7dMu/KFvvqxWrToBPfwtn0v7WfRg+SzSG+3yf8Xc
vSbaQX74Qg9/5IAeefgO/ePuHhG/g2OfnA/f7ReH853fwbFbfm8pOTnHgT6H
+sV3fgfn/+EHH75DX032wHd+B+d8nHnTaVauq81Xn6lEu/x+Z0zvjVsSPW95
AYxP1RslajQJ9LZpROvTeQtdNfvvHlOhX8dHvzN5LO//8LjcYT7IA58pDW/v
ahTwyVz40CNJpqezeTFy4JalrwR8oKN92oUv8iIn/cEf//NyiU4fBPEe+z74
NNG4c44Bn/3OTqCPEj18mffez4Pj523/w72yz5Zl7jA8nt7Otwd0ytNgWvy6
AB+/LkDf9JfN5+tH0Bv/mkOGtg/44+f5P+/nfZwDPXweFx/ofbsWZ4uPXxeg
L6d+QQ9eTHqwOFv6qCl/yHgx76fJz3A+Y/fgJs96LDzu+Gv0MXX5pxffD8Yd
/w6fRI3i7I3vtAP/JMn2zryQOqHty95N+ETrlwM7ZP7bPTvZw+8/9Tx8PWtm
o59x44Ms7QN6syfyxWVX2BN8sEOrMyK7w96YX3ZOIP7ML8sHl79lfsF/svoF
Dv+3hDPv4D9E/WXe8X/MU+adPV/SvGbeYUfXl8XpHznggzzIDZ9ybp2CHjmZ
R9jXUhfng7O/gN7uM7h5Z+e3bt7B54jbF0Dv553xd/MOPgdcnO/jOujh4+ed
b5d5BJ/Vbl8AvZ934H7e0Q77X8YLe8fOmXesh7E1hv8YOe9oZ277OH/LvIPP
Gvlt9E/7zHfmI//HPGU+Qr9I6wLz3+pzyA/QH7+vRw74Iw/zF/oZWr/oJ/x9
f5kHSWfHrZv0C7vz+1Di0J+qt3t9fbL4+y3QY5/g/B/2Sb/8fhwc/m9W6/pc
mD/j7fmDe/58x67ZFyMP8wA7BIce+7dzK9H7/Qg4+xHk9/tr5PTtgj+sXezl
7Y/WL8jWZbi1C95LOH6V/yt151Lr7BE4/5dTOPqBnv0+OPTs9/Gr0A9Xu+DQ
9xCOHvz+Gtzvr2kX/8F5Ajj7m6vr8qeItDfo8TPgtIOe+e733eDwb7Su+P51
Efbm+YN7/siJ3+B8A3nwZ/gxcOjxY+gL+oHuHAac8wTk8Pto5PTtgj+sXfxH
BdkJ7YIXEM76iD9ZUbjYtbDf4Dt+pW2ROBx6/AzxOfT8Dh/mifcDyIldl3Jy
gmPn7MfB9y6bsLbMhbp2bmP1MOTHeK5GvHNK+3rieORiXwzO/D38wZqGeU4u
M7nND4k/+2Hw67Jn+PJ7E9mh1Z0R/Yxll7o3K9/UnjOCMy/YZ4LvVLv0F/43
XLtWv+qVhnXD/PEv9rxG8xocffdyuNWrydVzWekIPdtzXcmPPcEfewOHfwGH
w+eUxhH5/fyFL/5puPOf4Pgr+IK/5uSHP+OFndjzf51DYg/8H+ch4My7Q3UP
7om0E+Yxds44gWMP9JdxHip65IeecURucPTD/1u8JD7Ize+7ZT/MB/rNvKD/
Vv9DemCe4weIK/jOvMc/oB/63XFivQx3YlaYXfGZqt29ST/0OWH7B/BhivOx
E/DJCz4psTKg5zv/5+nBJ2s/gjzoIV2iUT0j5eH/4M//Gy4+fOfzyL1q28L0
+CM+fxKO/YGPFn++8zs43/lMLv0QJ+FXOTdgPQNnX0N/aYdzD/aB4BPVL/oL
zj4Oe8ZOvT2DY8/YJ7i3T3vuKT7IwziwnyXeBSeuRj7+D/nRF/hI8UEP/M65
DXSGix49gLPfRA/Mp5+d/wfHD6MH8OvOn4MzH5EHu2Kfjh4M1ziyPtk5sM4T
8Efg7HdYP5AXefAztl7Jz5jfecj6xbiwLjAu/M66TLvgrHfoFxz/TLt+/YIP
+mMdhA59sh7B52F+FX2y7hC/4ec+XtCo1NVW9exeLngRnSegf+bdX5p3xGOe
D/s18Edi484DGS/4JNR4jU5Qpe53f560+fXNvgl3Bp/ebTj9bfHkH9mGBDh0
8El1JU37JyOeW4FPLZUxNozzvIP/y53y7zXdf9psOP83YHXzc2G84aCLt+/m
PWi/P5r45ps5130cleLRO8nu5j1vemtwPf2WM59XqgwOfduY3NvWZVsWNeDM
kG3RB68b3rBfjqPdOm2M6vIQ/bf5aniLQd3+Nbz1iCmnou8H+9zaVcdFH0xk
+sxwYHCl34N2weH/zq6SfZa1XRaVp2K1az/ci6/DHCr4Ue4xC/NVBrfnzgXu
fpg16Ff6PDW+r1Azvg5zBdGDQ/+t6FOkr5ljULe0Rp9K8oCbPGVadFkb6OGt
t+asbvt8fB79psLJ2oX18L++c/PO6B5vJ69mPjtgcNDf/hcL/PLDvfi6zZ2l
Z3DLA/uiz/rlQX9f7zRvxOHx8fWcF+x5u92Ornkrg0PfQuPI+HLO99XOCy/e
SrrMxhd8eItTlz7e9IuNoz1POHm5cb9xJ2wcrT5ulXOvh+syoTer05v4maJ/
hflLP+AJclw6MjPgj37Au3ef+kffgD/zC7yw+NMv8M4xI7Ot27Tc+oX/fq5d
7OIki9Zbv8APpfl9SpG1x6xflid979qej1afN/ntfn3DJE8/EuYj+cFHXux3
pVDAB/mt3SG7yoT5IA9+dcvqOY07ZYmXB/yligkHtusWLw94h9v9BoX5YOfg
oeQb3gm3i5zgbzTccSNxhJzgWb7st+zFbvFygreJbnp4RsAfuwK/80SZEmH9
ID/nYWXz3Dq1JtAz8oP/b/7cr/uMj7cT8DcT5xjTN8JOwH+8NWtSuK4a/bLz
70m9rnwU2AP9Av+m4cwUNyLsB/zuswMnvj4+3n6s3uHEDQUi7Qd8k9qlv+A/
rH8lQdjO6S/nwemKaL6rv1Z/9dzHW5a2jfdv4D2z1W/XJZjX+BnwTD8mXJEx
ws+ApxROv8APPPviG0vaxvsN8DpHK5zsHPDH/sE7SE7kZ917tmHsO9M+K1we
+W09LHzuhZ0Dq5VHTvCxJxq88kFAj5x2j0g4ctr92Q2Zn9sR8EEe8DfULvLw
/DOp0yf4pnJTD6yOWC/AO0uf2An4XukH+cFTOj2DJ3J6Bi+YcveAVRH+Gby6
9IydgC/VuNNfqz/q9M/zgvx/Na58M8Kvgn8qe6O/4P9z8wV8g+yWfoEvdPMC
/LrmEf0C3+bmhedPv8Bf13ynX8S5VVs0ez3Sr4Ifkt+gX+Avy48hP/hA56+s
LqX8G/Jb3Vb5K+Sx+rhFd46P9Kvg16vGHo/0q+A95OexK/Bx8ufICX7B+X/w
Lxf++/hLEX4VvKr8P/YDfkfrDvLbfQStX8gPXvSz2Ol9I/wq+HW3/oKX0/pI
vyyPUuss/bJ6iW5dtvzHQu2i+0T4VfCBbl327dJf8DmKH+gv5wyNXDxp+QGK
Z+gv+FDFjcx38GRPPBi/gf/r4jTwFYoP6Rf434rHsH/wWS5esvv53zd9ORxf
IT/4b7m6bA3HacgP3vHVGsf7t3i+MuMFPq1mlfbhun+Ml9UdT7S3cjiepL/g
nxeIfiwyLgWfI5z+gk8SH/pr5zb727QMy8M4gn8oeRhH8AS54/qFHvjM23vU
9egD020cU2n/vfPj97/o/9RiG8ct/ctUWvLn7qjoUT1n1Cz6rdlnAe1TPmrS
I23pJ4bb+NZ6NWWSEsu/jAq5OLyR2vVxOPv+bKGi2/oF7ZrfU7vV38peOdwu
/Sqmdv/Iur9m2aBd+lOsZpdbYy9diBrZ6Z1GfZp+b/3ic16d4qX3bNtl/Tq3
YUz2bi3ORl09OuVOk9cPmB3CJ1SjVb3eYT6SM6X4dKxf4/ndAR/kvCA+leb+
1CPMBzt8dc2eF/IVOhHVLO2Ddjj1yUvL08y7EVVqUIMlawbE+72kOjdKW6B+
srFfHzE5+Ty2eEvFL1OcNTnh0+Ot2s+vGhDv3zh/+ntLy25jAj7IOVB8qlWt
8vWCgA/y5Cj26cAWv/wT9da2GUuiW8XLM1r7zUlpCl5Ok+y4tZtT9PNe211w
UKv4dtmfTvrlZv7UAT38G0xdlGPnsIShfomuzp8xP3495Vzi05/PXDuTep/1
c9XAW/mSTE8QqvZiqnstBvxm7cIn08RdRTqtivd78JmUfNac3wM+9He1+FSY
3mFQmA/yjM8Re/t61kdDaco9GM/UjPl6cJp5j4T2Vlxx5Pnk60ye+7f3JixS
+pFQ6MozNwcl2mPywKfQtz8+NyvDJ/H7SvEpnujTn2sGfJAHPhufGjU0zAd5
ds3ociDLomShCf/Vb/+rEvJwjl7+vzzut21+8enjUvj0U3115IFPXN2Pt80+
4ZPyiQfjH/h9U+BB/XDe1iWqZ4W+Ef5h2P2xa15/OWVobf6C5asF8xS+L6/K
s+v45OShQZIHvnz6uA7+dRImfqFPhB+A/4aSew5WDfgjP/zT/lfH9a9KyN9k
Vt4PXjqaNvRLzMWSr0f6AbXTQfMX+dcN6zbz/ZtpQsXzXO7ROMIPwOfvCWuK
9orwA3xOf/HFtrsi/MB68cl4Je/xRhF+YFbU3a8SF0sdalHuQT1vTT+0QpUV
6UNbl115LdIPcE586ViRobERfoB2Qpq/yAmfuVsvJIr0A/CpEPv0yZgIP8Bn
xX3LC0T6gfNNLhX+5Z2MoQNHFpyL9AOcL42tlLpE2gg/AH256BOtI/0A9LH3
j70S6QeST34he6fGmUP5ml/a9FGEH+B879CcZdvORviBdYmHfTTsWKZQwwtj
P2sZ4QfgczJPzwqvRvgB+Mz9pU/0mQg/AJ+aBX4r0DLCDxT+dWuym7myhhqk
fTCeeTT1kW0jTmcJDSr1xf9qR/iBk9Uvx2aYnyX0aaUfe0VH+AH4pKp0JMuc
CD8An9hjk7vVivAD8DnaP/PNNyP8QN0sz94adS5baHLP35Ltzlzd5OF8+LrW
O+RJNLJt9Nz+2UJlvkr4yZBjM23eYXc+voK/jzeeFP9NWseRE/4zd+dfOzjg
jzwxOtds6/TzZZVFFWquOR0VK/1wHvip8LXqL/hlrZs1tG4SV3Bu2kd6A2f9
7az5i/zQ93Z6nq9216tdzuvAJ0hOcNbx+4oHiDfg31P9BUeepYor0M9mna//
7Oy51bx0hy+kvhZVQ/ZMvziP/1B2C846fkfrOP2F/gNn5y3Fv5LsHDmhPy15
wOFfTPEG8m/XefkV+R/Gi88q8ht8X+PWWeTn3L2q/A+43cPSek2/oK8kesal
rdqpL78HzvpeR3EC/YJPquNx8oPT7krFGza/JFcnty70Ppg7Rft6iUNPaV2g
vz2FPy4/D/6v1vf1Wt/hy+csrRd2Hq44oZTiBPTA7zPd+tJL7WZVu+gBPEpy
ghNvVFfcgh7gP0D9tfNqyfO74h/0c2Hn/iLnZqYO7XJxUemXv/10e/o0oUri
jx6eEr5aegDfoPUxl+RHDvgXkx7A0Qd64Dv0hV18hTxr1S56ACd+A2e9riC9
oQf4n1R/wWm/H/5H+uH52GwXx5a/trnqG3vTharIPukX9O/J/sFZr0Oyf9qD
foKLb+H/rOYdckK/XPKAwz+F5gXy81wri/wA44WeGmnegfv1FPnhk2hrnL8C
Z13+TP6KfkF/T/6N9vi8qv0O32m3hfwn/YJPGckPTrtX5ffoL79/5/aD077L
kL7EM1lCKY/F+X/6C/6y1ilw1vHDWl/oL/yZX+DEAxO0TqEH6Pu5fSXttlS7
6AE8m+QER575Wtfgy+dG9ZfvyDNG6xpxSCPt35u5OKSM9t0tj4TrOL1teptz
6sbdQzE/Rk2ufDNxhXof2rlWet37zq36UeB5hT/t8C2q77JddajAtwvfKxy9
WZ7r03PuXAnkQW9TJM+AtR80Kh/IQzxUSv0aon6BN1W/e+g8BD100f4909p/
OswL4jpw6tBEn0uc/eiEr8wewDdOabkvYdpfbdzBq8amP5rr5Bajb+7Wa5t3
0mstzTv48LysiM73iPeQ83LFuPgTnHOMWjrHIA6E/rzowa0Ocf1FSQ8G/cKu
wJs8ObxVoqBf2A943hEt6jwW9At64pB6mqfgnD+c07yGD/0qpfNS9GzvQyid
u+ny82vMHs4Iz6V6d+DnqFNNfT+1d+iLrVNLV7oV1blC5oFt0v1heoZ/w+NX
En9493fjwyd1EfnezeGMC3xqd0o2Ztftg8Z/v9pt0G/ZjtYR7f5z4ZlRG5Pe
iSpabd/SMA4f7k2M174JnHOVKTpXYXw5/+mj8x/GEXmarDudcUmgN+bFAclT
R/IwLtCPSL5/TFgPjIvhI19NtifoF/Tw6SN9gt9Rv/YkK9MujMPH7rNo/whu
9yV0voSfqU3+k+gZxxelv6qaF4yL5SOr7qXHqYeJ/u25rZ5H4E8s70r6R2/E
n5UV99o+grpkej6C/LR79elH6+0O9GbneMJDS1+5OC3C3nz9auQEvzg+umOY
nnGv0DNT53Mz70Ut0H6fcQef584B4DMtz2c7dgby0C/wC+JPv8BrS078JPzv
uvMK6vR8/O7IfmH/Rr/AP1E9TI9PdTj5IldVV9Pje4Wjn0Uv3Dk34nSS0GGd
C9n+JHrxifpbk4aa5x+R5KnA/6O3Y8tezTD11UShBBPjznPAOccroXM85h33
vJrqPAqc87R/dZ6G/uF/x50X0d9N86skzRnhJ7+W/Id0bgYekvx1uv22/KmI
9Qv+mcfEnWuBI/+Im7/FhP058wv5h+m8Dhz56+tckXG0+iGiB+febnHRY8/I
v0Xyg187um/z54NShKpLfsaRfKyNbnzBT7jxvSI+VTWO4G/pPHC3xp1xQc7r
GhdwzhXraxwZF/rbyOHwuSw+zBf6+5PaBb8qOVtJTotfhZeTHsA5z9wjvTEu
tBuSnsGRf5DGBb1Rz+09N4/APxTOeso5ZHPZCTj0Y0vu2X8oIp4BP3xyYa0E
EfEM+I+yZ+j9fsTGi3NL+U/48JyaeyDMR+QsrPkIznnsPc0v5h30BUQPbvW3
Tw7etC8ingHf1fnAtgQR8YzVu5Yfg55+1dI+Dpx+1dV6BB+ra617NeiZ+9od
X1jYfVlEPAP+g1u/rN4172vgfkXpcqVTfJIhtEnrLHq29xDJn8PH13l+GM64
wGeG1gv40y5xC/is9em/upwhY6ih4gr4WP6c4hZwzocnaZ1lfDnHnu/WNeTZ
nqxfse8i4hnkKSh5GBfon9f6xbiAJysXty5DDx/iFnD61U9xDnzo12LFLeD0
60vFLfhP6CeKnnGknTOKhxkX7p8WcfGt1T0Wjv65n1BD9xbwY1aXQ/pHb7Rb
152n2fsfdL8C+a1+suJA5Ad/R3Gjl7OwkxO8leJtxv2p01vmfX8raNfFseC9
3PNN+DRSvE2/wJuLP/0CHyc5WTfh39E9h7U6tdrX0C/wG25/Cn7R4VYn2e1z
wV8Xjn6W/zUswdpE2UKj9LwbnHP47drPorfGBZ55v/bGzKHW2t+B8zwig55H
2D098mT1nN3OJ3X+/5r20egf/o3dc3B7j5n2s+h5heRfr3sC4Mh/XecD6B/+
+/S8Hhz5O2jfbff9JH/KT+LuJ9h5puT/UucS+Fv4ddS+nu98fu1wno+sc+cD
3KNItCzu3gj8ua87WPd1GV9fR5pxZJ/bS/dw0I+9x1j3gphf7L/edPPLv/8I
3Ndhpl1w7jUx7uAL3T0o+Nd188jqaMk/oH97D3C1uPta6Id7+lErN8wo/fkG
k9PXT8ZuoX9te6Z/Swb02CF4N+GMi72/Sfzhw/7loNYL6G0/qPUXPROf/6R4
wO9TZrj4ytc3tv0+733V/UPkMT6KQ9A/9KXcPUbojyjuQv9WT1r3KukX9L8r
fmNcoD+j+5nI7+sSI7/VCe7bcPDRSY3KIyf4Wt0XRR7wY+82/C1MT7vgt3RP
lXZ9vWLaJV7arvuN8AcfqnuVdg7A+yzcPtq/FwPc1wGmXasrrHMA+guew927
hv85t1+GvrvOAdAD+Ju6H868IO7y88LX78V+oPfzAtzPC4vr3Lyw95jpXAh6
q0tdJu6cze7hyM931LmfX++uuvXO19dFz+C3dU8Peez9ADpvRP/Qr3f5F9Af
1vkq+of+Xd0zpF/2nkqd0zIu0H/l8lyoU9K//JwXXus/z/rl35OIPOA5Rv27
r3dAT7/wh5d17xQcvzdE92aRE7y/7uUiD+ceo2fv+aVbhDz+vVToGfzljCUb
humRE/wl4egNfJL40y778WjXrn9PE+2CN3Xtgjdy7YKPEH/0w3yJln7AmRdX
pU/0Fv++9bg8EeQhvuqocaFd8I0aX+bRLZ1brk0++LMy1+L1H6VzmFbav4Pv
1j2rF/+r/zkgfn8r+h46BwDnXlZcXdwB8ftW7S/+GV3y23C76DlW8cMJxQ/4
jWVdXvjik9f+jtqn+zngnMc+s3R2s3LX4vX2vegr6H4OOOfhCWPi2gXnXt8C
3esDRz+bpB/kh39Z8QeH/x31i/HKJf7f6Z4hOPwrlr1aq1yEHg5o/Vrh1oud
0udE6ZPxRc8xGhfGq53uiVUTDv9WWo++dfzbi36A+DOO3Der79oF7y3+do9u
dpulTxTPEOJepeVTaL/5qPqLnqGf7/Rv+33pH5z7V5Xc+GJXjK/duxP/ueJv
eRbij/0zLhfEP+XROHsD/0T8e8re0NsYPXdrp30K+C+6x9vE7WuIk7e6fDqe
343UfgF8h/iMc/sL+LR0/r/blur7F4+4HNVM983Ap+m5SXvt+8Dx26/Jn1h8
KDs/1KtTxmXdL5j9FH5IvL1C9OOmf9P7+4Ae+2H+jhKO/OBnxB87IV7t7OJV
4qt9irvgDz5Q8Rv9uvbyxU3vtU8X+kb3b8E5b/lH5/ng+OF+bj3Cfv44mmn3
9xF6eFh8BX3jVB2KR+oBvK5w9AB+S/zRA/HJ+tIPxifsN7+RPcAf/A3Zm92f
lv9f6dZ3/54j+IC31zpCv1j3c7v1BXyI+Ns9G43jTHeeRv7aTsW9zEfod2r/
YvcJhKdw51fwGa44mXZZZ1cOzn00e5tp8ed48nu1XJ6UvQ95Q5PGOQN6Ox8T
fW+Xz8W4NHPPPe19gNrn0i/oX1L8Sbvg491zRvjc1r6Y8xl7P5HoOZcAry55
oCduv6zncdCDT9G4YCfs69sqnxc+jO+t2YkP5Q30g51A30L5zvCHPsO9nzs9
HtDjn9nvH1L+Djjyt5F+LA5k/dX5JDjr6UU3H79w+2vo2S9/XDvVsOzP/WH0
/j3Ith8Uf+YvOPQ3+q3ely3ggx54/st5LDj5BfWcH4DPZfFh3KHHD4Dbe58k
v+1/5T+Tu3WKOKSHi4uYL8uVfwe9vedXeX/YOXHyds0j7Bb8sOYLdgK+zuHM
r2/AZSfQbxF/cOiXCUd+e5+t5Ae3Oo7yG4w78UAXnWODEz8cdeua34dCz77S
249/joCdwH+C1jtw6L39ICf3E8DhM8atp/Dx9gP9efUL3N7f5ewnndadb11c
2kZxUUUXp+GXLmj+Qg+eYFdcPr7fF2fXvhi7Yn3pJv+AfjhvvH5nyenoiHoC
0L86J87/0C/ok8Q++kbYX9Huk4pP6mgcwX0dP3Bfxw98gfxJefkTcF9PD9zX
0/PnTgn++4uu9P/CiSuece36unDgvi6ct+cGTg++Phu4r8/G+OKfU+qchPgE
v0c8D859iYLDEsy6vCD+fh33SbLuuLIjYYK1xt+eAyres+e2mhfs78B5fhEz
OP/5SP7YRbNJc8olCviz/nJf+u6ms6vzTlplOPcqS7z45oJ8Ac58z6P7cgl3
l+z0QcQ+qKHwxwp/fvH9iP1OD8Xbew7tX9J11TLDW+g+2IUNN1cVDPgzj4jP
DyqPA5x78kUkD3JCv1v04NDnEz18yBfLpXwxcPTw6OY4PaD/hqLfUbDip11W
xc9r8tEOpeq4+4mAnn4RV8eIHpznxW+Jnnahz+7kgf6RzQ+OC/TpRQ8O/R2N
I3zIiznv9Mn4Piv90K8U5OMcjhsv8LWir78xbrzwS3X0fOQPjTt2Br5bdgL9
MNlJLUfP/dISokdv+JNZT7+7Zcy2eDtnng6d2PVcGLd6NPqd+jbEYXbOqucy
rOvg1MHgfBycehH4I3DqMBAHg1MPAb9v9MoHx+/bvVonJ3EBdXiIC8Gp38K+
FJz6J8gPTl0L4gPDVa8Af2p8lO+PnPa8V3ncrCvg5EcjP36CONnqaQsnb5rx
svubOteCD/h3U/9tF85fRg/2XEv56Raf4b9V9wA9gPNchvEC57kD+gGnfgLj
CE5ePPoB53yb/oKTD05/mQecb9Bf8KPlqrcI64f+gvN8kHEH5/md1X8Rzj1G
9GPnZNpXoh87j9e+D/2Asx9EP+A8l8F+7L6J2mV9BeceAvq0+0TqF/oE57kA
+gQn/kGfxE3UibI6h8KpK4U+wbkvjT7Bee6JPsGpz4M+bR+guhzoE5znd/Z+
UOE8L7N6JcKpf4KewbkHhZ7BeQ6FnsGpd4GeTQ+qF4GewXmeYnViuRegOgPo
mXWD+lroGZy8fvRs58qKh9EzOM9B0DM4z0HQMzj7MvTs853RMzh1b9Cz5TWL
Hj3b81jxR8/gPHdAz+A8d0DP4MT/9txLOHmX6Bmc+g/omfX8W6dnu88rPaMH
8JROD+AjnR58njVyglNnAznByQ+1dUr70VRufoFTB8zWKeHU17J1SvgBZ//g
1L2xdUo49WRsnRJOPRBbp4RTNwP5iVs5n4He7nernobd59A+cYlbj8ALu/UI
nPpU9Avcry9WV198kAf8Q7eOWF6FzrftfeTCf/uxxLHIdcSeS+vcjHEB5/4G
8xGce+xWF0w454qMo90T13kg9mb7UeFWF0k4z/EZX3CemzPvjL/kRG/gnAdi
D+A8/0Wf4OyL0afd91Scgz7BO7t4DJz8FPRp9YF078We4wqnDhv6BKdeGfoE
554G89rOmXSPAj2DL3XxnuVV6N6pvedYOPcQ0LPJqXgSPYNT/wc9g/PcHD2D
U2cGPbOfoG4h+gSn7h/6BOf5C/oE5/k4+gTnvA59gndw8Tz4Gy6et3pgorf6
WdwX034BfYLzfAR9gvM8Gn2Ccy6EPq0+hPSDPsG5b1ZUeVzsI97RfTnyf8Cp
J8P5KTjPH9kPg1OPhfwB2wepTgXPU61ujeqTcA8bfI/qbPA8yepb6LkS53H2
vFrPr9mvglMXgvt/Vj9G9Rm4nwdOnQTq5rBPoX4O9WvAqWNDHrjtj5QnS/4z
OHVgyJcApx6L5dMKv6x8efar4NTNIB/V9l/KSyUPE5y6E9xrBL+q+g+cR7DP
ok4O+d7g5Duz/wenngb5ouDUteC+Jjj1JYrLDokTqupeKHYI3l33dblPAE69
IOwQnHo+2KHV79R9fuwQnPo22KHd41BeAHZo7eo+OXYITt0S7BCcuiLYITj1
PbBDHy9xrkocclt5zZxrWHyi+9hmh+DK7zY7pK6b8tzNDoVTz8fsUDj1XswO
hVOPxexQOPVSzA6hV54y9UHAN6pOCOdoxFHUf8AOwal3hB3aczPlvWKH4NRF
wQ7BqUNC/RHmBXVIqLth9Ro1v6yegHDqPJDnD059A/LnwWe7PHpw8sepe8J8
of4J55Lg1P2grgR4KdUfoE4BOHUVOO8Dp54AeeDgKZQPTr0V9tHUXaHeitVp
Vl459TvAGUfqXIBT74I6F+DUu6DuAzj1H6j7AE79B+zB5JE90C9w8u6xE3Dy
7qnPwjhTN4a6J+DUV2He2f7XzTvb12veYSfg1KnATsCp58D8Av/MzS+rey05
kT++/t+D8lvdXPExuxVe2MljdawlD/VurE6V9EaeNjh56NQTsXslGi/sE5w6
G3bezb0/2Q/jaPsvjSPy2P0dzRfq74DfUx0e/IydN8v+kROc+if4H3DqnyC/
5VkKpw4IOPVAsE9w6k7QL7sHrXmHfVp+sPrF+OI/qCPE+IJTnwf7BF/p4hOr
byF/hT2An3R+DJx6INgn+FUXh4BTF4LzeuIu6kJQRwCcOgnUBQCnToLl2wsn
r5/8PXDyE8nHAyc/kedk4OTT8fwP/0y+lT3fEX0H5X0Qb4NTF5Q6F/Ch3gX7
Glt3tA9inwJOPXD2KeDU2SaP3fy58rC4xw+95VMrT9XqlSoPlHxRqzuruJR9
DTj1mdmngFNfl30KOHVrbR8uOclT41611WVXnhR1QKCnHoi9N5z4U/t06jhw
fk49h3MOp54DeoYP9dWpy+DrNtj7jkVPPXPuUdnzAvIrHU4eAeMCTj67x8ln
J0+Ydrcqz5e8aHDyo+09y8Kpm829THDu/2D/tEveqMfJG7W8PvGhfjLnTV5v
D8Pt/c7iQx1j7m9BT96ix8lbxH7AyafzOPl01JEBp55MXodTT4Y6MlY/Rny2
O5x6Mvgr4grqt1CfBZz1kfod4OTDYj/g1G3gfg/tUt/A49Q34N4P+MaH4OTL
4yfByQf3+IcOtzhKeUas43avX+s4duj7y70EcPJ/GXdw8j25v4I85EV6nLxI
xoV4ifo5rCPg1F2hHgTtHlGePvUgrO6O7udTX8Cer3FvX/n5dn9ZfNCb5TEr
/515B07eNPmc8InRfVT2NfZ8Tfel2SfCh3ovneX/wVuoXgH7QXDqUbCP5rkD
dS1YL6CnTsJW1RcApx4C66nFyZKHfSU4edzvKz8TvA55pto/gpNnyv4aOclX
Ja6w50cVH8St/qhw4gfLf1V/waGnPgB2Ze/fUP4RdmX1X3UPk3EHp54A4w5O
frrFIcTh0hv1qqx+lfRgcYVw3jtjcYVw3gNicYVwnhta/ECdSNkn9gNOPROL
H4RT78LiB+oR6vmmxQ/CqZ9v8QN553reanEC9201f7nfb3VoZP/oAZz37KAH
8DbuebfVC9dzatZf8O2av9TjAKdeB/0F5/0R+D1w7rWiB/Cq7nm31dvW827s
jXiKOlrsvywPWPsL7pOBU5eA9QWc+jzYp+XBKI8Vfw5O/Qr65fnjz+05ke6L
4s/ByaOnX+wXqAPGPAKnfhTjAp8jiovIm7L9neIixgucOirUTzH5xQc90C51
PJinVvdU9+fJE4DPJuUR4J/ByVvHPxt/7S+YX+DDFZ/b+33JO1R8jn9mX0Ld
HuYj9NSBwT+DR4s/fgacehT4Z3DqUeCfwdMpjx7/bPTa7+Cf7XmK9nfU0QOn
nh7P0cB5jxXnpeDk13Ofm/0X+bDEnx63/AfOw3Wfn+c7Vk9az8uwW6v7KDvk
eZPdi1c8jN3afkF2ftbtR8i7Rx47b9d89PuINW4fAT355n4fQb45/YKefB+e
Q4HzfhbsHJz8aL8vYF+DfqCnjoeP2wu7uN3ud8mP+bidvGDLZyA+VByIPODU
q8EeWMfJd0af4OT1ozdw8uuxH8+Hflm9Aa3vyG91whQPII/dPxUf+Hvc7FPr
HfXWzD6pn6F7QWafwqlngn2yjvA+MvRpdYekT9q191FIn+gHnHoCyGPrlPLF
sCurr6N1lvECJ/8d+cGpu4I+wcnXRn78KvUG4Q9O3Z6uth/Q81bnB+x+rs5/
6C849RAYL88H+e39V7rXjfzg5I8zLvgl3k+H3sB5vxL5P8wX8sqzu30reeXs
B6En79vvE4+7/SD05Gv7feJOt9+0c3XlZUMPTh43+zJw8qnRg9WbdPe7wHmf
HfoBH+juWYHznib0Y/lDahf5wV9y8oOTbw49djXJ6cfsUDj9BSdPnDxwq+Ou
OIQ8cKtLofxf8rXoF3m1xFfg5H0T/yA/+eM89wQnf5x8UeyNfHDywMHJFyCv
0t8HIA60e9TKXyBf2p4vq1/kXWMP5F+TL211K4WTH251K/W8lbws8EeUp8zz
YnDy0NEnuOWhq19WX0H09MvT8/wXnLxpxgWcvGnkZ7zKOvnB72kckQd8rpPH
2wN54/Hvs4rTG+OOHZLPDr3dsxJOHiD+ivx69AZOHhN53eDkd5PXDU5+N/4W
OyEfGf8JTn4u7fpzS+QEJ2+RfEX8FXmLjAv05K8xjuDkr+FP4EP+GnE+9IsV
5zPfwckL9udR5AXHat+KnRfR82jy28GTpav40dz3F1v+FXzIwyrscPLHFzg9
kG9FHib8ycdkHYee/KmH4fhhcPKqPE4et9cn+VPo3/L4lZdHu3bfW3EF+1m/
j7b3TvH+WPWLcQcnH5B2wckHZHzBo3XOxjiCk8fN+QPz6KeFcfdbeN8Y+HPj
sz4yLxhH5LS6KbJb5LG8Q9kherC6I4rbyV9iflGXgDwfcPL0WU99XIE+vd+2
vE3hIcUnVp/RrQuss4wX+ezMd3sPheJY1k1w8srxA+Dkg3M+Y++T0r1r+IOT
5875CTjvN4Q/OPnjyI+eybuHv93X0H4f+a1+ufJwrb6hcPLQiVfZP5Jvzj1G
q9Om5yDEsXYfTPtT7hNa3Uc9hzL+iv/JW4c/dsv7lI2/6Mlbhz/0vCcUPow7
74kmT8/u7ylfjzw9cPL14A/Oe1GxW8vfUh4c504WbygPjvGyPGnl0ZNniH7I
NyR+g558aquDJnre28v4Qk+eNfeyLN5WXif5ruDkvXLOA04+KXmtxkf5p9y/
AicvlfMZz4fzGcszUrvknYKTf4oemF/koZN3Z/to5dnh96Anv5h7d8Q55EVy
vwKcvEjuxVm9Gd2L414EOHmF2DM4dQywQ+Yv7xPHHxou/tybAievE/u39zPL
b2Cf0PNeXcufpP6N+ot9gpNHafap+UXdBvJdmV/kvZp98v46jQv2aeuXzpPN
PkVPXj988D/UE2B88W/kVzK+0JMPTh0E1hHqIRCvWl0c8ohlD+DkvXK/1Ooo
aP6SJw9Ovjx58j7OJL8UnDxT8kvtfa3KM0V+e2+D1lPOAcCpPwDun1MTh0NP
vRrOATyfhz3vpo4P84t6PrQLTh0D2vVxGvw9Pfs47GSU4w9+2fG38x/H39PD
3+oMO33aPSXpAf4+zoG/p+ceO/rkPb/Py+/T37TKcy/0kLh3/kPifx/HUq/y
/zdeJf5HTvTD+4LxV7YP0vkPfgacfHz8JH6DPHr8ITh59Pg3O7d0/g2cPHf8
FXh2569sv+zyxFlneV9nSr1Pl3Vwh97nSx158K7U+ee9lsJ5Pybv/bXzJe2b
eG8uOO/P5bmMvb9Rz2V4vyZ4Md2vs+d/7h5UPj0ntefpum9cU37Y5yGyLwbn
faO8V9jee6/n0TxPAa+n56HE//YcUPsI7iXaezN1j5H+2j1nPWfkPiF4Bt2f
5Pkvfpv3F3fWc217H5HyHeiX1TvUe04/0XNt8FbK1+C9fT4fgbgCPKvyI97Q
fGaeNpH+iZfQP+/nIv6xPFndMyf+8TjtgvNeMPig/4qO3p5rq13yO9BbYcm/
TXzAM+i9Zshj72k8/qAewHlfGO+bsfdb6nkZ66bdy+J9N/puedPS2z7R+/sw
w3luzT0TvQeB+BP9TNQ9CuqG2DmY8hd4/4f5Ab3HhDogVv9Y+RfU17b6QMrX
II8DvI7L4wDnvULIY+daTh7zh8q/IC8DPrxvhbwMO68TH+SHz2tOfvAWkhO9
+bwGzj/9uQE461dfjSN8/HNS+sv8uqM8pqPqr9Wz1HtYkN/e+608rEaSH/yI
8rZiXT0E6nwecHUMqHvZytUxoF5lRclp7yWTnMgDXlryUPcQeah/yLiA834f
X/eA+kW2vvIcRM9TzO6Fr0xyfOaebWvNvsEL5Ri0JsVX35mdgXeqnTfrT89M
t3ECvztuR6JfAj6Mk9EnG3E6ZcAHeZi/4+ZlTxMeR+QB75Ni6u8lmh+2eAZ8
vOhp194H/mvrUSUDequXInykaxf77KXngFb/UPiQ6Xk67YrQg+U95f76fMbN
8XoAbzYi4cbNEXoAr5El7dZdEXoAzzV5ZMLMAR/ktLwk6dP0o/mSrusf1VJH
6kf4xeaXWxaP1I/wNKI3/XAvKOvXd4pH6kd4a43vw+KTAc5/1pD/fMv5ySj3
fmqrWy/+8AHPJ3nor71vU/Lb+aPwy66/4JlET7uMD/aJHYCnkf6tbpLwqhov
9ADO+KIv8GyyB+QEf0v2gzyMP/ZvzxeFN5Pdogfwr2Xn8Ld8YTcvLM9X9PSX
cX7HtWv7u/Fx85T+gs9Fb+qv1VfTOCIP+Dn5DR+XvuLeu0r7FdVfe9+Z8Jyy
Bx9nVnXvVbR6I7IH+g8+VvqhXXsfL7jatefj4gN/5k1RyQN/8PbIL/6Mc5b3
Dy7POS9ez+B/yx/SLviO5aFpOebF6xN8hfTp8yA6u/dd0j7t+ry5V6V/7BIc
+2fcwXP8MDx59oCPz5tborw5q3Or/tEve47IPXk3XjbPpE97X5vsPaPmr9VT
5T6M5qPPazjr3kcJ3kLjYu9TE38/L8BZd+y9nMJ7a12w944J937V1k/11/Lb
Rd9X6yztQs+6Zuduwt+W36Bde++B7NPmofALshP4oNcaSS6cyzovfnzNr8pf
wcfsZUWcHSIn/5dT9mD1hIVX0rggp+Fq1+oGC3/T+UP+b6fs3+yTfZ/kNPtk
3yH+dk5N/WAXt9i5ipvX+MtMzt6gR07sB3y0xgscPt6uwIlPkBsc+7H8ItkR
cQt6iK/T9qCewf06Dl5Y/hw+yFtO40h/wXO4OAS8g/wJdga/4S4uAsfekAO8
rot/wJ+RPPC3eo1uHMFTyT7hD15k/INxpr0/SPLbe4E1H4l77b261NPVfLf8
JcnZj3tiPM929Xjtnoeri9vQnadl13ka3+nfVdkn8li9VenZxps8Vo07dPR7
kuwTPpZH6fwn9Kxflocse2Rdpl/grJtGL3t8zK3X4OfVL9vfci9F8iC/5RO5
erDgnFtaXKV2hkk/8fknqkPi3s/iz43B/bkuOPyvOBy5Frg6tPAnjgK39zLJ
nv8PV4z3SA==
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxNnHUYF0X39ve7OYsSJjYgKhjYXYSBomIgiC2IiI9goWIrioWJCkqIiIiI
id0IBordioUCKgZ213t/uMfr9/6x15ydnZ3dnZ2Zc859ok3fY/c5Jk2S5Pcq
STKVd5ZJspTKbfIk6SZ69UaSLBK9icp2OlbWtcdUv57K3XXPTyFJLlcHj6r8
QcdQ0ber/KhIkjXU/lvd+53OL1T9/Sqn695tde8+uneWjk1EP6W6jmqn02Sm
XuJunS/HO6jibN23tvppr2MHtWmq+tlqc5/arCK6s9o8qPOH1G4ttXlA9AOi
W4veXu3VLHlSdbvQXnVfqO4DvdtqohfyjTpWVZuX1OZ59bWp6KfVdj+df5v4
O49Wm+NV/qG6L3XvObp3V5UH1Rof1T+k9rfo3pmi26vcWt/5pOi1RPfQPZ+p
fScdV+ue5VV+ov7eFd1S9KeiR+v+LqKbq25H0d/o3ptU/7G+42vRa+q4RdcW
qZyk+p0YCx3r6Lyrys10rCv6L13bSPSfKieq/VeqmyB6pPrcUvWp6nYQ/aXq
b1D9dqpbX8cajLXKrXS0Ff2o2qytcle9/8eq21BHS51vyvglHvf+un+Ayl/0
fY1g+ifd96ve+Rcdg9X2SLX5n+p/VZvP9exTVddR5WFqN0T0dqKvVdsddJym
8+F6Xm+1n6/rbzGOomeJ/kf0fqLnid5M9/wh+kH1fYnOr9a9q6s8XW1uUd3L
+ifniL5d9Kui/6fyOOa33uHrynPvebU/Q3QX0a+Ibq0+u+v5K6g8S/U7qP5V
1f8geg2ep34mi56h+nYqf9O1s0XvJ7qfnt9Zxwm6v6/qz1LZVfd0UDk/8Txm
fjBPdmSuim4jeie914861lG7H1T+ojE8T/3cpfLh0v+8q9qvp+ttdCyr83d0
vo3K53T9Z7X9ScdAXftD9X1U/w2TXfcfoOIz0X10nKnrO+t9Fug4W/QuKg/X
WMzQvafr/BLdu7/aL1DbT3XtFNaNykN1frLobWmfu/8fdF8f3ddRx9G6tpau
7adyVZXb6rlPqc3a6m+Mzp8RvY7oS3X9Ah1n6vx/ur+l7p3AO6n/WuVL6nsM
/0vXl1H5qOpuFr2k6MtEJzrOUrG07h2vex/S+RQdN6luCbVprvpbVf8AbXV+
uYq+Kv9R/8NFH6f+GzofIXqw6AP0biPUdn+VLXTflaLP0bVjdG0Ia0j9/al7
LxB9sO77V/Qlog8VvbfuGa72e6k8Uu2e0v3n6nxNlbeqnKR2V6j9nTrvoPI5
tWui+pfV9xJqP47/q/MgeqLoO0SfLfpJ/qXu7a72Z7Bfqfw3M/2E7h2vduNE
13qHY3V+MZ+qMtNxLvsn/et5q6qfF3RvWXkMB1EyVuw9Oj9L1+4UfbLK63Tt
NsZV5bU6XlMf8zXPU9FXqb6fyqWYt+rzZbVvrfIG3Xs9e5HoNjru0fktOkbq
uIYx1DsvwbnosSpH67hU9PUqL9dxmehcbULD/+kKPXO2ynVVrq/5c66e87fe
YVPmrfpfQeUcle+l5iW3651WUPt7Vb+y+llJx4uq30/Xt4j7f6fcbZ7RtQvV
39Kqe191r4teRvQH8DLWmNq0Un+biX5M9OqiN1S/d6uf9VWeqHJ3xlP3HFt5
zbJ2b2KOim6j8nod94heQeVEHY+Ibq3yBh33il5R5TA990H1cbrKzYO/dwPV
H6OjNd8CD2T/0rOWU5lVHr8jVV6j+3Id5+v8apUX6xgm+qTc87OEF+ieUvXP
i75B9HWiD9OzntJRiZ6t+ptUP1H0INWN0XN20jGUOaVnvK3rn2nMp4huoT7v
UtuNdUxTmw1UnqRyDx2vq/2HhfnqV7rnHrVvpfYPqE0rjfVqOt5g/PWNr6t+
C13fTvRrojcXfWtluQL54h3193ZqHjxU9buq/i3VXyh6H9EflZZHeoj+WPQR
rFcdvdh/C6+VO/UOB+o4SPS3evb18B61uVvXt2R/VP3duv64nvOj6H35Z7q2
l9qspHJ1Hd+r7lb6aHj/767zzdj3Vd7GPFG/v7Cv6/g7N+8bp3Kw3m28yic1
bieK3oA1C//XvRuKniH6cz13gY49de9Y3kflXeylDe+ZPdXuXdXvoXJYZT72
XeLz73V9Xx07iV5f7/Cd6B7w/GCesjNrNjdvmYFsI7q96DdEt1W7zxKvgQfV
bkHkI6siayT+B6fAX1mfhf8N/2hsYZ7EPH9F/bTS9XnsDzpG5uY/y+u+r/Se
C3X00vVndb6F6l9WH3/r/m9Zoyrvqiw/IEcsQobR0VvXGjr/SeWdavOC6O2Y
//qm49T+Ov6VxvNKaNW3ZI2KXgu+Kfp40e1EP6LyhMrf+4j6uCLu7ezxB6nf
Qv0/x9wovHaeFd0keE9jb7usMl+AP3xRWO7orHIJtblI9X+r/tLKe+ySyLai
r2QcRB9TmxfAE/YpzJuezC2XIJ/0rC27IMM8qvqH1eZE5CqVWyNz8E8Ly0Wn
8SyN8z06/x/ym8o/NU5/pJaTeui8oXKm2i6lZ1+h9oep/K7wOhupcmFhHr4D
343srTZ/6Dn3IeuofjcdM3S+PnNN33G32qys8yWbiAewZ6nvp/TOD4j+VfRM
0aeKnix6luiTKs/nj3TfTYXlw1zlfL3jp+wLOn8coV11z6r9KZXnw1y1/6ow
b9wN2UDPPE/0HvA13fdPahkauZp3TpETVbdj3JeO0vEr/FfHB7p3L5U91P9s
9d9MfWR6/yGiN1f9iyrv+29/0vlGpffsS9RuXV17VnUv6H2eb3j/53xl1T+g
ckJlHgAv2F/9v617XlKbKwrz8CUbbveGzmez/6rcQPWvwdNZm6JfEf1C3PfZ
/z/OLfc/KfpA9dmM8RT9rN6hX2E+2FPlVap/UW0/VJuRol8VPVf0qw3rBS/p
nqcL89C+Kq+Gr6huFfWzko6B8HmNwzWqn6D6+ao7tjAvPkTl0zpfS2PRVG3a
qs3jajMJGVl17fkG1mnuvXe+5su0wmN+j+rOU7tuot9GD1D9L6Knqf7Xyv+C
f/JT7r1oFLwI2Uj0h6p/kHks+iHVP6fnNG/42U81zAefgDerfFjHdNHnqH1T
0W+o/fnIZKLfFd0ZPVT0HPrPLU+2V3m22tyt+lNUbq82zUS/pfrHGpZtHmQP
1fe007NnIkuqzVqiX1X7Zql56HlqM7Xh/1Lp3SexN4tuIvqDyvvwafCfYB1w
b9FTeCfmjvqZmlt3mKvn7BTMF3ZTm165echn6HyV+c7ZyNe59/uvVH+mjsdS
85456utNPftalWNz69YrInfreFn1I9hTC8s4l6m8TG3eYo6rvDm3ztcoLEfN
gXepHIF+C/9VuXHlefSi3nFN9fE5/eu4Utfehy+rvD+z3Hgbcq3Ot+T/qm7P
3Gv5fdG1jiqzvDpGxxTVB/W9S2Y58F7WVmk5+JXCMuN9/A/2ULVpklnubaGy
WWZZfRmVS2WW55uXli9fQjZXv6N136fButYM0Qv0Lrvn3ovehdfn1kFfEP2E
2ixMjEVcqPOXU+vJFyAbptaBdwvWo/dUmz3QkUW/x96r6+/o+W/ruDG3Hvyb
yn90fryOI3Se554vT/MOer+TRU+nVJ/dGt5Xe6uvR1Kfv195352j8iPVd0ys
l7In76767XV+gMpdGl57Cyrz+vnIPrnbcx91PaMMsFxhXfhWlQ8E77vraq/Y
V+13ZqzU/hTV76P6uepnT73LtqllhtOCy09V30Httknd7grRn8Q9vGew/POh
2uynPvdUn58zL/SMQ9iLSs/p7nEfYH0c3LCsckBuuexrXb9Kx4jI6x8PLjdQ
H/uV/ubVCstx8MpvaKvjiyhL7BM8Jm/qHTZS/QY6ftT5Y8HX11c/vYJlp8+R
u0UfiCxa+fsZB3R+vuPQKMu9WHo8+a4r1WZ4lMf2qb3PjVb5cul1zfpuW1j3
n6tyu9T975ZYZjys4b3vweA+1tO9Z+vedVjTyAM69m54f/hD5W/wax33594b
F6rdoaL7if6Jb6uMY1yk8i+1/z2xjn1Qbr73ndpcpPqsYR3vQpVpw/xyUeW9
+nyVB6v9IaK/V/ufKu+9F6ucnlvn3qa03ouMtGRufRj5J6gclns/XkNl82B5
A9350GDZpg/rL7f+nag8LPea+BmgUOPzl4oj4Y+V5+deKofm3oNbqXwlt154
qMZkuWDZDL1mSO41vpTKF3Lrhb3AHsACRC+t8iI949XUOswzufWe7dBNkIdV
3yfKs+s2LNP2CZb3+qv/Wbl1poL3DdY3/6f613U+VfWnoscE8/dRqj9d9Tey
zpBDgnXYgao/T8+alZo/vZlbX16RfSKYr41Vm9Ny899l0cvV/vXUOj/yH3Lg
ItXdX3lvQW7/Nzdud6Pe4UvNoVEqt1F/O+v4BN6vur6il0bHro1xoGOCeTSJ
vB5+1V1tPle5Um0edm3kaZ/ofHBhPOJT0Wfm3tvfF30C+4XK52rvKW/rvqdF
Lyn6ucp7y0XwJnBa1XdV+21UPqZjR9Fb157/F6NTBa/xK0X/GrxOrxD9s8pn
1K47e5nKj5EpkTNUfgQeVxhH+ED0yarvWhvX2lV1+wbjfrvE/QDZhrEcEIzd
sR5Z9+iGg1hjwRjy9qK7MWeD5e0/gmUS1uDrwbhuR9XvLvpIHSvoPdvquUsh
p6n+OdXNYz3n5lvgLPxrcJcQ+RF8b4ba7KY226lsyTxT3fPwf51fru/alH8i
+gLRGwVjWPclxrQWqH4oMqnq3xS9JbKwrr9XG9PZKe5F7DMPRX61QcM44O+6
vjwyVOZ/gh70uuhvgrHZXdRPVhhjfC0zD2O+oVNtGPdk9tJd1H7rhvXTX3Jj
vRN0367BOHD3yrrjxg3rj8g+mzeMge8djDOzxh+rLHsg87RX/+eiE+raGqLP
ET2vYYwZzLk1MgT4TMN4waOV53+3ymOJ7vxOZjmGPtGrwb/Bw/lOcG50ybcy
/2P+9bPorKn3CPYH8Mi+Oo7h+zWO7dXXz2rzpsbzSF1/Inhv5t7FmG/tvf5b
9gTRG4r+rfI6wB4xGfyyMs2YrBt5xyJkmmD8/VV03Mxznm/fS/U7NqwLM/fR
TebAx3XMBSNGhhP9UWpbwJDg8iKVtwXj70/p3jNKr8HVVKYq/06MrQ/T9X8S
643ni/5X5emJ1xD6covcOBD4D7rrWchGqbEL9rnHG9Zldks9H5mXzEGw34P0
rOaV5bo2epdlde+E2K5V3M/B0PqD70Vs/98oI/XXteG6p6nqD2YM1Oexqnuc
sdTYzgTrUX2WGvM/Wtf6qq+ByFrqbzT7ZcTPxwT3ewBrR3UnNYzJsk7Zt9m/
e9fG8CbVlvenN/x+5+fWJ9bMrR+wrtHrWHNgy9+o7ImMFuXVdVLrdM/p2vV6
j9sjtryC6OcaxrJXrdz3jSpPVv1tsc3AYF1mTZUnqX5qxJ/RaZ5U+7X0Dsdq
TB/R+Rl67pp61ydEt1A/n5TWBeDRu+neXXWsEeXl+xuWmVfOrY+AzY3T9aZR
Zj471nN9M9XlESvYXP3/Jvpfvc8b6IGq+xO9XG2ubRjXgKeNahhbhB/Dl8FJ
4AngG0uorGvj4Yfr3qOCdcmjRTcNxnEPQ/8O5tfIBszHSxqekwcXxphnqlw2
uH948TaZ/y96/VboElH331LP+kt0hhxbuP8Z7KE6f1r176qPI/ROg1X/p+67
JFh/OyRYDroqykLLBD/3CD1rd7VbDtuGrvUL1rWPqsz/r2gYc0Yn69cwHvh6
abkRebJVbZzxjdIyZv+G/xN7yC7sf7X1N+qwPe1bW8cdW1umZZ9BrmXvQXf+
ROWPet8BDdtj5pSWSZHZfm8Y8zkUlpXaZnRClIEYWzCf/QrbmBqiR6lNkdrm
cojOD+c79C59dZSpbUAV+1/Dti72M3DUA0vzJfDqwaJXiXj5u4l5FBj1IpWX
5BHPgF8E4w836z2H59YfO7BPB9suwRAuzI2jrK3yTT33NB0rs6aCMRbWy9rB
2DsYy1sR60VsxK6MvPaITjZR/YoN4487p5ZfkGOO1bVn4jmyDLae2Sov0r2z
RK+j8ozgve37ys+fgyyk45vKeAWY6kbYENirE+uQM1S2y70ukaeQqzqAuzei
HUL0svB00V/mi0Xe5Am9y+M6lhF9jSq+zk3foPeZlVmfHq2693L3typjqXd7
X/10VnlfZT67k8p3dG1a4j3h3WjTaMI6xJaBjJFbzoJnvoycK7qZ6BdFn6/j
hdT4yGOZcdmrc+NN4E6ro/c3bKOnr2mZ7SFLiH41+FoXldP0HqvBV1XeXUW7
Oms5Mz95XP20Ch5z1j74wO1qcwvnogsdN+r8vGA73qUqr1NdlvkcWQ+capnc
9j3sDuwvfQpjp01Uv2JqGXZCYtsU2Gwz1U9R/S5xf25XGydavvJe+2zDusoB
tW3mk2vvt7Pinos8xtgyxl3ACNTPSjqGiX4+YkHLVd4/2bcvCK7rEKz/0Dd2
eeT6pxvGrJCd4Yktc8ut2OBmqVwmtTyIXDhW/d+cGt+4UGtsR/6Vym6Rp7C3
42DRNbW97H/YVhrWQY5Xm5tS4yot47Oww41hXUe85ehgPgdfPlfXHlKb1uzb
uj4pPndY6X7WVjkj2Pa2ArKS2oxlTqd+JvLsYh0m+FvYG58KthGuhlwTv6UV
7wtviu+8Q+RxjOdxDeuY6LFzS++j6LBgf+i56Lu/Fp7/rBH0m5mqP1HX16g8
zuwtF6vdi6LXY8+JmOoriW3d3Iu9oXVmrPtj0cvWbndcMNb7keq20r3ji8Wq
aPK56OtFzxU9rjBWgk4Klp2V3icfU939Kt9jD9TRUX09rTbbw9/Yy9g7VbbJ
7HfyYcN2EfanDXLbtcGKaM86Y02B2e1ZGwc9v7a8il6GzIrdAvsF8jmy89yG
ZVx0PTAosKjTSsvLk9T3qtjgG8am8OPA9wK/i36ZbfZ8Q5/MPhPwg71q26Mu
VLlPZt8b+rpZfW2cGNNHrv+oYX3g4mBflD1U9oyyKee3l8awLgaHwy7SMAbY
K7NPAvLtFPB/9QHWPznKydgP2rHPZG6DTva3jr6J7XbY75BDHiiMhTyg9mfW
tgHhw/B+aaypj+puzqzbY2/DdoctD9n0muC66SonZbY9ocsga//QMP8+rLYP
wrUqDwOHim3QKXkW/BibHjY4+OI09TUstQ/SSqX1m7fR3XW+s9qswt5TWoYH
l3uN/SK1rWovldvrGKRrq5T2x8CmghyIH8KNkffzTJyPPsmM4eFHckhtH5NR
Kp8srfuAExalZbm2Kier/aZRtnuosHz9SG5ZG9kY/OXT0pjb37r3nNJz4VG1
va+wTHFfbjzpz4YxJeRs5G38bfDpQBZHDn+kMH7zWG79GPsd+NdByFtR39mz
dHlbYd3xm4YxtUeC7ZId9C1Dat+L39RNmXFGrqG7NFLrL/cWxqmwc6FDoTPe
gb5fWAb/SO+wWuX97Xhkscy2amTHc0vvYc8UxjLAq9F5wDhWSe13MTvKCdhR
8tJ6yhOqu6O0PHFZaZ6/cup27N+rpd5zB2T25+CeUFpGXYM9o7Regz8G9it0
EvSR6REH3qawbIqMis8PvjbIc8hyt6p+6yj7TlG5ZZR9z4iyGnLaUZl9Qvi2
FfTetyb2zQAfAQ+/PfJH8Ap4JNgF8wu8Ctx9SuSV65aee8eAAdS2GT2ptgMz
82x8brZVuV1mfI1xXDbyi8uCr/cPfu7yqX08nsUmkdhW9byOiYntSkeW5g8v
ih6s/iZHfoGPD2MF5jgos68O/IJ3g9+DrXVWfafM9fCi5dL/46mU2MPQOZZK
rT+Ag/G+4IL71bblXl3b5oNNB7kWex12OGxwJ2YeE8bmUh1b6dgsMb7AWvst
4mLYKZB9kY/wG0FG+lDllqltpUPgvZF3357ZZvGfjoZtA/nmncJy4tzc8uN6
qWVI/EjwJ9lC7/5xYX9CbJbYsrC7wQvvyKyrYKO6KbicHSwTtU0to6yCHpvY
b+TNwnIv9sfeur51/C7wBfaofwrr2+jdmxS2E2MvRo/rVdtGPaK27QsdCiwV
3ah5an3jtsz8nnFrX1q+AYPFTwofqXPU5v3CcvRnqu+e2XayaZTfN07NI+dG
/Pwv1npqW8OOiX0Yto30mpX19K3A6oJl1Y7YLDLz5s10DA6WsbeqLBfA99FP
3issI8zPzZvYQ+BJh0Y+Bd0zt11iQWYZlH/VorQein35RJ2fE2zTOUD9D0jt
fwh2dHbw/O1ZGS9g/TUrrX91jG2+Kr3H9tV4fll6Txup+05ILS/dofOVcuvx
+DOBNwyO9V8XXlvYbtPMOg/6ztGpfXJOEj00+P8cqHcYmFoeHp/Y56prpFtE
zKcJMpfqOsXv+r40fxgdjKt0jn1eGceZ8b48ji1jzHfvk9oH4rrUfdHPT4V9
BfEZPCt+C9+E3IUvELLXyNS8ED7YMjOuBKbEfrJvar0AXIj+Gc8fSvOyfhq3
s4J92/ZV/Ra6t0vs5+TU85u5jW2xWxw3vnvf+O2Lot66dOkx65EaWwAfgGbc
fgfXSr3eb4j/mn9+SuqxZkz+iGuTNfpeZdsdNj38WA5MPYeZv9DYy/7V+UGp
19o1qec38xmfloNT83psRtDg1N9VtlGcHjz3D43tkWeg0VtHiT4s9fxZr7B+
Pw85JniOMdfmVf9nx0OOBefcoDBWdnjqfw2/O0L0FoXnAvXgaWODx5yx71CZ
z55Qe14cEcfhhcrY5Klqe2rqOcc4dyvsv4Efx5DU64T5f338d/zDLoX9T/BD
WTlYLxwWzEOPSu0jzZo7Ks4rfBQHpZ632IuPT/0fmTvQ4I2sCdqg+y9Zer2w
blhbx6bWR5gv/eOcwXZMPesUOYp6fIzxXTwu9dq/K/X6ZC6xnqiHb+Ingo/f
O6rftPLecmJtObl7amwWuRpMG3n6tNo+iefW1g3QEdCf9476QvPEvgBnpbZP
3xrsx4iP+l6ZcQo1X4yVQINXzNf5Gal9uaYE+wHi935qbX/As1W+x9im9iF5
Bj6d2rdzzdJ4XvPc/Bs+fmPwOILf3pxYPgejxq7frrSshF/IpOD5wLw4JLMP