-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
325 lines (270 loc) · 10.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
"""Core model definitions."""
import itertools as it
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from tensorflow import keras
from . import layers, uscale
from .pedal import utility, xpu
@dataclass
class Residual:
"""Residual settings."""
norm: Optional[str] # None | "pre" | "post"
alpha: Union[None, str, float] # None | "mean" | <float>
@dataclass
class Conv:
"""Convolution (sequence mixing) settings."""
kernel_size: int
groups: int
kind: str = "conv"
@dataclass
class Attention:
"""Attention (sequence mixing) settings."""
heads: int
head_size: int
frequencies: int
max_period: int
kind: str = "attention"
@dataclass
class RNN:
"""Recurrence (sequence mixing) settings."""
rebias: float
kind: str = "rnn"
@dataclass
class FFN:
"""FFN (token mixing) settings."""
multiple: float
kind: str = "ffn"
@dataclass
class Settings:
"""Model configuration."""
vocab_size: int
hidden_size: int
depth: int
residual: Optional[Residual]
sequence: Union[Conv, Attention, RNN]
token: Optional[FFN]
dtype: str
seed: int
class _ModelFactory: # pylint:disable=missing-function-docstring
"""Builds the various kinds of model from settings."""
def __init__(self, settings: Settings, unit_scale: bool, seeds: Iterator[int]):
self.settings = settings
self.unit_scale = unit_scale
self.dtype = tf.as_dtype(settings.dtype)
self.seeds = seeds
def kernel_initializer(self) -> keras.initializers.Initializer:
assert not self.unit_scale, "unit scale shouldn't use Glorot"
return keras.initializers.GlorotUniform(seed=next(self.seeds))
def embed(self) -> keras.layers.Layer:
if self.unit_scale:
return uscale.layers.Embedding(
self.settings.vocab_size,
self.settings.hidden_size,
dtype=self.dtype,
seed=next(self.seeds),
)
# Unit variance embeddings make sense in any case
return keras.layers.Embedding(
self.settings.vocab_size,
self.settings.hidden_size,
dtype=self.dtype,
embeddings_initializer=keras.initializers.RandomUniform(
-np.sqrt(3), np.sqrt(3), seed=next(self.seeds)
),
)
def conv(self, settings: Conv) -> keras.layers.Layer:
if self.unit_scale:
return uscale.layers.CausalConv1D(
self.settings.hidden_size,
kernel_size=settings.kernel_size,
groups=settings.groups,
activation="relu",
dtype=self.dtype,
seed=next(self.seeds),
)
return keras.layers.Conv1D(
self.settings.hidden_size,
kernel_size=settings.kernel_size,
groups=settings.groups,
activation="relu",
padding="causal",
dtype=self.dtype,
kernel_initializer=self.kernel_initializer(),
)
def attention(self, settings: Attention) -> keras.layers.Layer:
cls = (
uscale.layers.MultiHeadAttention
if self.unit_scale
else layers.MultiHeadAttention
)
return cls(
heads=settings.heads,
head_size=settings.head_size,
frequencies=settings.frequencies,
max_period=settings.max_period,
dtype=self.dtype,
seeds=(next(self.seeds), next(self.seeds), next(self.seeds)),
)
def rnn(self, settings: RNN) -> keras.layers.Layer:
(cls, cell_cls) = (
(uscale.layers.RNN, uscale.layers.RecurrentHighwayCell)
if self.unit_scale
else (layers.RNN, layers.RecurrentHighwayCell)
)
return cls(
cell_cls(
hidden_size=self.settings.hidden_size,
rebias=settings.rebias,
dtype=self.dtype,
seed=next(self.seeds),
)
)
def sequence_layer(self) -> keras.layers.Layer:
if isinstance(self.settings.sequence, Conv):
return self.conv(self.settings.sequence)
if isinstance(self.settings.sequence, Attention):
return self.attention(self.settings.sequence)
if isinstance(self.settings.sequence, RNN):
return self.rnn(self.settings.sequence)
assert False, f"unexpected sequence settings {self.settings.sequence}"
def token_layer(self) -> keras.layers.Layer:
assert self.settings.token is not None
cls = uscale.layers.FFNLayer if self.unit_scale else layers.FFNLayer
return cls(
self.settings.token.multiple,
dtype=self.dtype,
seeds=(next(self.seeds), next(self.seeds)),
)
def residual(self, body: keras.layers.Layer, index: int) -> keras.layers.Layer:
if self.settings.residual is None:
return body
if self.settings.residual.alpha is None:
alpha = None
elif self.settings.residual.alpha == "mean":
alpha = 1 / (1 + index)
elif isinstance(self.settings.residual.alpha, (float, int)):
alpha = self.settings.residual.alpha
else:
assert False, f"unexpected residual.alpha {self.settings.residual.alpha}"
layer_cls = (
uscale.layers.ResidualLayer if self.unit_scale else layers.ResidualLayer
)
return layer_cls(
body, norm_type=self.settings.residual.norm, alpha=alpha, dtype=self.dtype
)
def trunk_layer(self, index: Iterator[int]) -> keras.layers.Layer:
# Relying heavily on dict ordering...
parts = dict(sequence=self.residual(self.sequence_layer(), next(index)))
if self.settings.token:
parts["token"] = self.residual(self.token_layer(), next(index))
return layers.Isotropic(dtype=self.dtype, **parts)
def trunk(self) -> List[keras.layers.Layer]:
index = iter(it.count())
return [self.trunk_layer(index) for _ in range(self.settings.depth)]
def norm(self) -> keras.layers.Layer:
return (
uscale.layers.LayerNormalization(dtype=self.dtype)
if self.unit_scale
else layers.LayerNormalization(dtype=self.dtype)
)
def predict(self) -> keras.layers.Layer:
if self.unit_scale:
return uscale.layers.Dense(
self.settings.vocab_size,
scale_for="separate",
dtype=self.dtype,
seed=next(self.seeds),
)
return keras.layers.Dense(
self.settings.vocab_size,
dtype=self.dtype,
kernel_initializer=self.kernel_initializer(),
)
def predict_padding(self) -> keras.layers.Layer:
if self.unit_scale:
return uscale.layers.PadAndShiftLayer(dtype=self.dtype)
return layers.PadAndShiftLayer(dtype=self.dtype)
def loss(
self,
) -> Callable[[tf.Tensor, tf.Tensor, tf.Tensor], Tuple[tf.Tensor, tf.Tensor]]:
return (
uscale.ops.softmax_cross_entropy
if self.unit_scale
else layers.softmax_cross_entropy
)
class Model(keras.layers.Layer): # type:ignore[misc]
"""Base language model."""
# pylint:disable=too-many-instance-attributes
def __init__(self, settings: Settings, unit_scale: bool):
super().__init__()
self.settings = settings
factory = _ModelFactory(
settings,
unit_scale=unit_scale,
seeds=iter(utility.split_seed(settings.seed, 1000)), # plenty of seeds
)
self.embed = factory.embed()
self.embed_norm = factory.norm()
self.trunk = factory.trunk()
self.norm = factory.norm()
self.predict = factory.predict()
self.predict_padding = factory.predict_padding()
self.loss = factory.loss()
# Our base model is always pre-built
self.build((None, None))
for name, layer in utility.named_layers(self):
assert layer.built, f"layer {name} ({layer}) was not built"
for layer in self.trunk:
xpu.current_context().outline(layer)
def build(self, input_shape: tf.TensorShape) -> None:
super().build(input_shape)
self.embed.build(input_shape)
hidden_shape = tuple(input_shape) + (self.settings.hidden_size,)
self.embed_norm.build(hidden_shape)
for layer in self.trunk:
layer.build(hidden_shape)
self.norm.build(hidden_shape)
self.predict.build(hidden_shape)
prediction_shape = tuple(input_shape) + (self.settings.vocab_size,)
self.predict_padding.build(prediction_shape)
def run(self, tokens: tf.Tensor, mask: tf.Tensor) -> Dict[str, tf.Tensor]:
"""Run the language model for cross entropy loss."""
hiddens = self.embed_norm(self.embed(tokens))
for layer in self.trunk:
hiddens = layer(hiddens)
scores = self.predict_padding(self.predict(self.norm(hiddens)))
loss, n_tokens = self.loss(scores, tokens, mask)
return dict(
loss=loss,
n_tokens=n_tokens,
act_hiddens_final=tf.math.reduce_std(hiddens),
)
def weight_stats(self) -> Dict[str, Any]:
"""Stats regarding weights in the model."""
shapes = {k: tuple(v.shape) for k, v in utility.named_weights(self)}
return dict(
n_weights=sum(np.prod(v) for v in shapes.values()),
n_weights_no_embedding=sum(
np.prod(v)
for k, v in shapes.items()
if k not in {"embed.embeddings", "predict.kernel"}
),
weight_shapes=shapes,
)
def save(self) -> Dict[str, np.ndarray]:
"""Save model weights to a dictionary of numpy arrays."""
return {k: np.array(v) for k, v in utility.named_weights(self)}
def load(self, weights: Dict[str, np.ndarray]) -> None:
"""Load model weights from a dictionary of numpy arrays."""
variables = dict(utility.named_weights(self))
if variables.keys() != weights.keys():
raise ValueError(
"Load does not set correct weights"
f", extra: {weights.keys() - variables.keys()}"
f", missing: {variables.keys() - weights.keys()}"
)
for k in weights:
variables[k].assign(weights[k])