forked from jjcheer/ocrcn_tf2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
executable file
·77 lines (61 loc) · 2.09 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
inference on a single Chinese character
image and recognition the meaning of it
"""
from alfred.dl.tf.common import mute_tf
mute_tf()
import os
import cv2
import sys
import numpy as np
import tensorflow as tf
from alfred.utils.log import logger as logging
import tensorflow_datasets as tfds
from dataset.casia_hwdb import load_ds, load_characters, load_val_ds
from models.cnn_net import CNNNet, build_net_002, build_net_003
import glob
target_size = 64
characters = load_characters()
num_classes = len(characters)
# use_keras_fit = False
use_keras_fit = True
ckpt_path = './checkpoints/cn_ocr-{epoch}.ckpt'
def preprocess(x):
"""
minus mean pixel or normalize?
"""
# original is 64x64, add a channel dim
x['image'] = tf.expand_dims(x['image'], axis=-1)
x['image'] = tf.image.resize(x['image'], (target_size, target_size))
x['image'] = (x['image'] - 128.) / 128.
return x['image'], x['label']
def get_model():
# init model
model = build_net_003((64, 64, 1), num_classes)
logging.info('model loaded.')
latest_ckpt = tf.train.latest_checkpoint(os.path.dirname(ckpt_path))
if latest_ckpt:
start_epoch = int(latest_ckpt.split('-')[1].split('.')[0])
model.load_weights(latest_ckpt)
logging.info('model resumed from: {} at epoch: {}'.format(latest_ckpt, start_epoch))
return model
else:
logging.error('can not found any checkpoints matched: {}'.format(ckpt_path))
def predict(model, img_f):
ori_img = cv2.imread(img_f)
img = tf.expand_dims(ori_img[:, :, 0], axis=-1)
img = tf.image.resize(img, (target_size, target_size))
img = (img - 128.)/128.
img = tf.expand_dims(img, axis=0)
print(img.shape)
out = model(img).numpy()
print('predict: {}'.format(characters[np.argmax(out[0])]))
cv2.imwrite('assets/pred_{}.png'.format(characters[np.argmax(out[0])]), ori_img)
if __name__ == '__main__':
img_files = glob.glob('assets/*.png')
model = get_model()
for img_f in img_files:
a = cv2.imread(img_f)
cv2.imshow('rr', a)
predict(model, img_f)
cv2.waitKey(0)