-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyzer.py
50 lines (44 loc) · 1.71 KB
/
analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from typing import Dict
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
class Analyzer:
model_dir: str
tokenizer: T5Tokenizer
model: T5ForConditionalGeneration
character_dict: Dict[int, str]
def __init__(self, model_dir: str, character_dict: Dict[int, str]) -> None:
self.model_dir = model_dir
self.character_dict = character_dict
self.tokenizer = T5Tokenizer.from_pretrained(model_dir, is_fast=True)
self.model = T5ForConditionalGeneration.from_pretrained(model_dir)
if torch.cuda.is_available():
self.model.cuda()
def get_character_from_sentence(self, sentence: str) -> str:
"""文章からキャラクターを推定する"""
input_ids = self.tokenizer(
sentence,
max_length=512,
truncation=True,
padding="max_length",
return_tensors="pt",
).input_ids
outputs = self.model.generate(input_ids)
resp = self.tokenizer.decode(
outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False
)
if int(resp) not in self.character_dict.keys():
raise ValueError(f"ID:{resp} is not in character_dict")
return self.character_dict[int(resp)]
if __name__ == "__main__":
model_dir = "model"
character_dict = {
0: "香風智乃",
1: "保登心愛",
2: "天々座理世",
3: "桐間紗路",
4: "宇治松千夜",
5: "条河麻耶",
6: "奈津恵",
}
cl = Analyzer(model_dir, character_dict)
print(cl.get_character_from_sentence("おはようございます。"))