diff --git a/docs/copying.html b/docs/copying.html index ef90bcf5..b906abb1 100644 --- a/docs/copying.html +++ b/docs/copying.html @@ -3,7 +3,7 @@ - + diff --git a/docs/description.json b/docs/description.json index 629e95b4..7af99553 100644 --- a/docs/description.json +++ b/docs/description.json @@ -1,7 +1,7 @@ { "generator": "generate_html", "generator_version": "0.3.3", - "date_generated": "2024-01-07", + "date_generated": "2024-01-08", "package": { "name": "statistics-resampling", diff --git a/docs/function/boot.html b/docs/function/boot.html index 302636a6..bc2d1b93 100644 --- a/docs/function/boot.html +++ b/docs/function/boot.html @@ -3,7 +3,7 @@ - + @@ -115,9 +115,17 @@

Demonstration 1

Produces the following output

ans =
 
-   2   2   3   3   1   1   2   2   3   2   2   3   3   1   3   2   1   2   3   1
-   2   3   3   2   1   1   1   2   3   3   3   1   1   2   3   3   2   1   1   2
-   3   2   3   3   2   2   2   1   3   3   1   1   1   1   2   1   2   1   3   1
+ Columns 1 through 12: + + 3 3 1 2 1 3 2 3 2 1 1 3 + 3 3 1 2 1 1 1 2 3 1 1 2 + 3 2 2 3 2 2 2 1 3 1 2 3 + + Columns 13 through 20: + + 2 1 3 3 2 2 2 3 + 1 2 3 3 1 1 3 1 + 2 3 2 1 1 1 3 2

Demonstration 2

@@ -129,9 +137,17 @@

Demonstration 2

Produces the following output

ans =
 
-   3   3   2   3   1   2   2   1   1   3   3   1   2   3   2   2   1   2   2   3
-   2   1   1   2   1   1   3   1   1   3   3   2   3   1   1   3   1   2   2   2
-   2   3   1   3   3   2   3   1   1   3   3   1   3   3   1   2   1   2   2   2
+ Columns 1 through 12: + + 3 3 1 3 3 2 2 1 1 2 1 1 + 2 1 2 3 3 2 3 3 1 3 1 1 + 3 3 1 2 1 2 2 1 1 2 3 2 + + Columns 13 through 20: + + 3 3 1 3 1 2 2 1 + 3 3 2 3 1 2 2 1 + 2 1 2 2 3 2 3 1

Demonstration 3

@@ -145,21 +161,45 @@

Demonstration 3

Produces the following output

ans =
 
-   3   3   3   3   1   2   3   3   1   1   2   2   1   2   2   2   1   2   1   1
-   3   1   2   2   3   1   3   1   2   2   3   3   2   3   3   3   3   1   1   2
-   3   2   3   1   3   1   1   1   3   1   2   3   2   1   2   2   2   1   2   1
+ Columns 1 through 12:
+
+            3            3            3            3            1            2            3            3            1            1            2            2
+            3            1            2            2            3            1            3            1            2            2            3            3
+            3            2            3            1            3            1            1            1            3            1            2            3
+
+ Columns 13 through 20:
+
+            1            2            2            2            1            2            1            1
+            2            3            3            3            3            1            1            2
+            2            1            2            2            2            1            2            1
 
 ans =
 
-   3   3   3   3   1   2   3   3   1   1   2   2   1   2   2   2   1   2   1   1
-   3   1   2   2   3   1   3   1   2   2   3   3   2   3   3   3   3   1   1   2
-   3   2   3   1   3   1   1   1   3   1   2   3   2   1   2   2   2   1   2   1
+ Columns 1 through 12:
+
+            3            3            3            3            1            2            3            3            1            1            2            2
+            3            1            2            2            3            1            3            1            2            2            3            3
+            3            2            3            1            3            1            1            1            3            1            2            3
+
+ Columns 13 through 20:
+
+            1            2            2            2            1            2            1            1
+            2            3            3            3            3            1            1            2
+            2            1            2            2            2            1            2            1
 
 ans =
 
-   3   2   2   3   2   3   1   2   2   3   1   2   3   1   2   3   2   3   2   3
-   1   3   1   1   2   3   3   3   1   2   1   1   2   1   3   1   1   3   3   2
-   1   3   3   1   1   1   2   3   2   2   2   1   2   3   3   1   1   2   2   1
+ Columns 1 through 12: + + 3 2 2 3 2 3 1 2 2 3 1 2 + 1 3 1 1 2 3 3 3 1 2 1 1 + 1 3 3 1 1 1 2 3 2 2 2 1 + + Columns 13 through 20: + + 3 1 2 3 2 3 2 3 + 2 1 3 1 1 3 3 2 + 2 3 3 1 1 2 2 1

Demonstration 4

@@ -172,15 +212,15 @@

Demonstration 4

Produces the following output

ans =
 
-   44   23   23   36   44   23   44   36   36   23
-   36   23   36   23   44   36   36   23   44   44
-   36   36   23   44   23   44   23   36   44   44
+           44           23           23           36           44           23           44           36           36           23
+           36           23           36           23           44           36           36           23           44           44
+           36           36           23           44           23           44           23           36           44           44
 
 ans =
 
-   23   23   23   36   23   23   23   36   36   23
-   36   23   36   23   23   36   36   23   23   23
-   36   36   23   23   23   23   23   36   23   23
+ 23 23 23 36 23 23 23 36 36 23 + 36 23 36 23 23 36 36 23 23 23 + 36 36 23 23 23 23 23 36 23 23

Demonstration 5

@@ -194,30 +234,30 @@

Demonstration 5

Produces the following output

ans =
 
-   4
-   2
-   3
-   5
-   4
-   6
+            4
+            2
+            3
+            5
+            4
+            6
 
 ans =
 
-   4
-   3
-   4
-   6
-   6
-   2
+            4
+            3
+            4
+            6
+            6
+            2
 
 ans =
 
-   5
-   6
-   3
-   4
-   1
-   6
+ 5 + 6 + 3 + 4 + 1 + 6

Package: statistics-resampling

diff --git a/docs/function/boot1way.html b/docs/function/boot1way.html index 65765651..40e3c0f5 100644 --- a/docs/function/boot1way.html +++ b/docs/function/boot1way.html @@ -3,7 +3,7 @@ - + @@ -473,7 +473,7 @@

Demonstration 6

----------------------------------------------------------------------------- | Comparison | Test # | Ref # | Difference | t | p | |------------|------------|------------|------------|------------|----------| -| 1 | 2 | 1 | +0.2799 | +0.54 | .628 | +| 1 | 2 | 1 | +0.1206 | +0.21 | .820 | ----------------------------------------------------------------------------- | GROUP # | GROUP label | N | @@ -518,7 +518,7 @@

Demonstration 7

----------------------------------------------------------------------------- | Comparison | Test # | Ref # | Difference | t | p | |------------|------------|------------|------------|------------|----------| -| 1 | 2 | 1 | +0.2132 | +0.33 | .620 | +| 1 | 2 | 1 | +0.2364 | +0.42 | .547 | ----------------------------------------------------------------------------- | GROUP # | GROUP label | N | diff --git a/docs/function/bootbayes.html b/docs/function/bootbayes.html index ecac863a..0fc74200 100644 --- a/docs/function/bootbayes.html +++ b/docs/function/bootbayes.html @@ -3,7 +3,7 @@ - + @@ -186,7 +186,7 @@

Demonstration 1

Posterior Statistics: original bias median stdev CI_lower CI_upper - +184.5 +0.01393 +184.5 1.309 +181.9 +187.2 + +184.5 +0.01529 +184.5 1.351 +181.7 +187.2

Demonstration 2

@@ -222,8 +222,8 @@

Demonstration 2

Posterior Statistics: original bias median stdev CI_lower CI_upper - +175.5 -0.03600 +175.5 2.421 +170.7 +180.0 - +0.1904 -0.0005078 +0.1928 0.08075 +0.02605 +0.3399 + +175.5 -0.07775 +175.4 2.287 +171.1 +179.9 + +0.1904 +0.002169 +0.1929 0.07622 +0.03454 +0.3340

Package: statistics-resampling

diff --git a/docs/function/bootcdf.html b/docs/function/bootcdf.html index bc4e0395..37fb1304 100644 --- a/docs/function/bootcdf.html +++ b/docs/function/bootcdf.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/bootci.html b/docs/function/bootci.html index 47cbcd39..2b22b608 100644 --- a/docs/function/bootci.html +++ b/docs/function/bootci.html @@ -3,7 +3,7 @@ - + @@ -183,8 +183,8 @@

Demonstration 1

Produces the following output

ci =
 
-   23.825
-   34.411
+ 23.825 + 34.411

Demonstration 2

@@ -202,8 +202,8 @@

Demonstration 2

Produces the following output

ci =
 
-   23.462
-   34.651
+ 23.462 + 34.651

Demonstration 3

@@ -222,8 +222,8 @@

Demonstration 3

Produces the following output

ci =
 
-   24.811
-   36.698
+ 24.811 + 36.698

Demonstration 4

@@ -239,8 +239,8 @@

Demonstration 4

Produces the following output

ci =
 
-   100.29
-   233.90
+ 100.29 + 233.9

Demonstration 5

@@ -256,8 +256,8 @@

Demonstration 5

Produces the following output

ci =
 
-   116.40
-   265.89
+ 116.4 + 265.89

Demonstration 6

@@ -276,8 +276,8 @@

Demonstration 6

Produces the following output

ci =
 
-   106.75
-   290.95
+ 106.75 + 290.95

Demonstration 7

@@ -296,8 +296,8 @@

Demonstration 7

Produces the following output

ci =
 
-   115.81
-   278.35
+ 115.81 + 278.35

Demonstration 8

@@ -317,12 +317,104 @@

Demonstration 8

Produces the following output

ci =
 
-   0.5167
-   0.8730
+ 0.51674 + 0.873

Demonstration 9

The following code

+
+ 
+ ## Calculating confidence intervals for the coefficients from multinomial 
+ ## regression with ordinal responses using the example from:
+ ## https://uk.mathworks.com/help/stats/mnrfit.html
+ 
+ ##>>>>>>>>> This code block must be run first in Octave only >>>>>>>>>>>>
+ try
+   pkg load statistics
+   load carbig
+   # Octave Statistics package does not currently have the mnrfit function, so
+   # we will use it's logistic_regression function for fitting ordinal models 
+   # instead. 
+   function [B, DEV] = mnrfit (X, Y, varargin)
+     # Note that the logistic_regression function is only suitable when 
+     # the outcome is ordinal, so we would need to use append 'model', 
+     # 'ordinal' as a name-value pair in MATLAB when executing it's 
+     # mnrfit function (see below)
+     [INTERCEPT, SLOPE, DEV] = logistic_regression (Y - 1, X, false);
+     B = cat (1, INTERCEPT, SLOPE);
+   end
+   stats_pkg = true;
+ catch
+   stats_pkg = false;
+   fprintf ('\nSkipping this demo...')
+   fprintf ('\nRequired feaures of the statistics package not found.\n\n');
+ end
+ ##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+
+ if (stats_pkg)
+
+   ##>>>>>>>>>>>>>>>>>>> This code block is the demo >>>>>>>>>>>>>>>>>>>>>>
+
+   ## Create the dataset
+   load carbig
+   X = [Acceleration Displacement Horsepower Weight];
+
+   ## The responses 1 - 4 correspond to the following classification:
+   ## 1:  9 - 19 miles per gallon
+   ## 2: 19 - 29 miles per gallon
+   ## 3: 29 - 39 miles per gallon
+   ## 4: 39 - 49 miles per gallon
+   miles = [1,1,1,1,1,1,1,1,1,1,NaN,NaN,NaN,NaN,NaN,1,1,NaN,1,1,2,2,1,2, ...
+            2,2,2,2,2,2,2,1,1,1,1,2,2,2,2,NaN,2,1,1,2,1,1,1,1,1,1,1,1,1, ...
+            2,2,1,2,2,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1, ...
+            1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1, ...
+            1,1,2,2,2,1,2,2,2,1,1,3,2,2,2,1,2,2,1,2,2,2,1,3,2,3,2,1,1,1, ...
+            1,1,1,1,1,3,2,2,3,3,2,2,2,2,2,3,2,1,1,1,1,1,1,1,1,1,1,1,2,2, ...
+            1,3,2,2,2,2,2,2,1,3,2,2,2,2,2,3,2,2,2,2,2,1,1,1,1,2,2,2,2,3, ...
+            2,3,3,2,1,1,1,3,3,2,2,2,1,2,2,1,1,1,1,1,3,3,3,2,3,1,1,1,1,1, ...
+            2,2,1,1,1,1,1,3,2,2,2,3,3,3,3,2,2,2,4,3,3,4,3,2,2,2,2,2,2,2, ...
+            2,2,2,2,1,1,2,1,1,1,3,2,2,3,2,2,2,2,2,1,2,1,3,3,2,2,2,2,2,1, ...
+            1,1,1,1,1,2,1,3,3,3,2,2,2,2,2,3,3,3,3,2,2,2,3,4,3,3,3,2,2,2, ...
+            2,3,3,3,3,3,4,2,4,4,4,3,3,4,4,3,3,3,2,3,2,3,2,2,2,2,3,4,4,3, ...
+            3,3,3,3,3,3,3,3,3,3,3,3,3,2,NaN,3,2,2,2,2,2,1,2,2,3,3,3,2,2, ...
+            2,3,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3,3,2,2,4,3,2,3]';
+
+   ## Model coefficients from logistic regression
+   B = mnrfit (X, miles, 'model', 'ordinal');
+
+   ## Bootsrap confidence intervals for each logistic regression coefficient
+   ci = bootci (1999, @(X, miles) mnrfit (X, miles, 'model', 'ordinal'), ...
+                X, miles);
+   [B, ci']
+
+   ## Where the first three rows are the intercept terms, and the last 4 rows
+   ## are the slope coefficients. For each predictor, the slope coefficient
+   ## corresponds to how a unit change in the predictor impacts on the odds
+   ## across the (ordered) catagories, where each log-odds is:
+   ##
+   ##       ln ((P below) / (P above))
+   ##
+   ## Therefore, a positive slope value indicates that a unit increase in the
+   ## predictor increases the odds of running at fewer miles per gallon.
+
+   ##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ 
+ end
+

Produces the following output

+
ans =
+
+       -16.69      -20.526      -12.642
+      -11.721      -15.188      -8.0851
+      -8.0606      -11.299      -4.6596
+      0.10476    -0.062295      0.28823
+     0.010336     -0.00273     0.023016
+      0.06452     0.033493     0.094721
+    0.0016638   0.00019837    0.0031828
+
+

Demonstration 10

+
+

The following code

 
  ## Spatial Test Data from Table 14.1 of Efron and Tibshirani (1993)
diff --git a/docs/function/bootclust.html b/docs/function/bootclust.html
index e361c7b3..ec645f6e 100644
--- a/docs/function/bootclust.html
+++ b/docs/function/bootclust.html
@@ -3,7 +3,7 @@
 
   
   
-  
+  
   
   
   
@@ -169,11 +169,11 @@ 

Demonstration 1

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.2%, 97.5%) + Nominal coverage (and the percentiles used): 95% (1.3%, 97.6%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 -7.105e-15 +2.599 +23.56 +34.62
+ +29.65 -1.776e-14 +2.525 +23.89 +34.65

Demonstration 2

@@ -198,11 +198,11 @@

Demonstration 2

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.3%, 99.0%) + Nominal coverage (and the percentiles used): 95% (1.1%, 98.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 -0.03609 +2.885 +23.15 +35.90 + +29.65 -0.02622 +2.914 +22.94 +36.13

Demonstration 3

@@ -229,7 +229,7 @@

Demonstration 3

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.512 +41.58 +98.70 +235.5 + +171.5 -6.758 +42.69 +95.86 +235.5

Demonstration 4

@@ -258,7 +258,7 @@

Demonstration 4

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -9.285 +33.61 +104.5 +215.2 + +171.5 -9.106 +33.87 +103.6 +215.3

Demonstration 5

@@ -280,11 +280,11 @@

Demonstration 5

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (13.5%, 99.0%) + Nominal coverage (and the percentiles used): 90% (12.6%, 98.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.015 +42.52 +117.4 +266.7 + +171.5 -6.269 +41.18 +118.5 +261.3

Demonstration 6

@@ -308,11 +308,11 @@

Demonstration 6

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (11.9%, 98.5%) + Nominal coverage (and the percentiles used): 90% (14.2%, 98.9%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -9.338 +33.31 +121.7 +228.2 + +171.5 -9.540 +34.39 +124.2 +234.4

Demonstration 7

@@ -337,8 +337,8 @@

Demonstration 7

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.005392 +0.02096 +0.2672 -0.4675 +0.4154 - -0.1459 -0.07730 +0.3883 -0.7714 +0.4478 + -0.2145 +0.005866 +0.2161 -0.5736 +0.1393 + +0.3399 +0.006693 +0.1491 +0.09370 +0.5845

Demonstration 8

@@ -364,8 +364,8 @@

Demonstration 8

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.1623 -0.02809 +0.1560 -0.06140 +0.4708 - +0.1405 +0.01761 +0.1529 -0.1759 +0.3341 + -0.07936 +0.008087 +0.1608 -0.3296 +0.2014 + +0.1572 +0.03360 +0.1299 -0.02060 +0.3576

Demonstration 9

@@ -391,11 +391,11 @@

Demonstration 9

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.6%, 96.5%) + Nominal coverage (and the percentiles used): 95% (1.8%, 96.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.7764 -0.02432 +0.1463 +0.3810 +0.9934 + +0.7764 -0.02311 +0.1403 +0.4088 +0.9907

Package: statistics-resampling

diff --git a/docs/function/bootknife.html b/docs/function/bootknife.html index d064babf..a6914061 100644 --- a/docs/function/bootknife.html +++ b/docs/function/bootknife.html @@ -3,7 +3,7 @@ - + @@ -222,11 +222,11 @@

Demonstration 1

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.2%, 97.0%) + Nominal coverage (and the percentiles used): 95% (1.3%, 97.2%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +2.842e-14 +2.589 +23.77 +34.39 + +29.65 -2.487e-14 +2.599 +23.93 +34.50

Demonstration 2

@@ -251,11 +251,11 @@

Demonstration 2

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 95% (1.2%, 97.6%) + Nominal coverage (and the percentiles used): 95% (1.2%, 97.5%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +4.263e-14 +2.631 +23.19 +34.73 + +29.65 -2.842e-14 +2.681 +23.29 +34.51

Demonstration 3

@@ -281,11 +281,11 @@

Demonstration 3

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 95% (2.9%, 98.1%) + Nominal coverage (and the percentiles used): 95% (1.8%, 97.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +30.86 -0.01663 +2.865 +24.86 +36.80 + +30.86 -0.01582 +3.084 +24.62 +36.92

Demonstration 4

@@ -313,7 +313,7 @@

Demonstration 4

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.869 +41.81 +96.39 +235.4 + +171.5 -6.799 +42.70 +97.51 +238.0

Demonstration 5

@@ -340,7 +340,7 @@

Demonstration 5

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.065 +43.05 +112.5 +263.2 + +171.5 -6.948 +42.58 +113.2 +258.6

Demonstration 6

@@ -366,11 +366,11 @@

Demonstration 6

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile (equal-tailed) - Nominal coverage (and the percentiles used): 90% (2.7%, 97.3%) + Nominal coverage (and the percentiles used): 90% (2.2%, 97.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.191 +44.06 +86.04 +250.6 + +171.5 -7.860 +44.42 +82.39 +251.9

Demonstration 7

@@ -395,11 +395,11 @@

Demonstration 7

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 90% (12.0%, 99.5%) + Nominal coverage (and the percentiles used): 90% (11.1%, 99.5%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.271 +45.86 +113.8 +282.4 + +171.5 -6.858 +44.63 +111.1 +277.5

Demonstration 8

@@ -425,8 +425,8 @@

Demonstration 8

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.2278 +0.05796 +0.3038 -0.2667 +0.7195 - +0.5514 -0.06078 +0.4989 -0.2452 +1.394 + +0.1422 -0.001048 +0.3051 -0.3470 +0.6634 + +0.2758 -0.007181 +0.3225 -0.2429 +0.8094

Demonstration 9

@@ -452,15 +452,115 @@

Demonstration 9

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (0.5%, 93.4%) + Nominal coverage (and the percentiles used): 95% (0.5%, 93.3%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.7764 -0.006225 +0.1351 +0.3601 +0.9457 + +0.7764 -0.006608 +0.1408 +0.3172 +0.9490

Demonstration 10

The following code

+
+ 
+ ## We can also use bootstrap to calculate confidence intervals in multinomial
+ ## classification problems, which we will illustrate below using multinomial 
+ ## regression with an ordinal reponse and a proportional odds model. The
+ ## example is taken from https://uk.mathworks.com/help/stats/mnrfit.html
+ 
+ ##>>>>>>>>>> This code block must be run first in Octave only >>>>>>>>>>>>
+ try
+   pkg load statistics
+   load carbig
+   ## Octave Statistics package does not currently have the mnrfit function, so
+   ## we will use it's logistic_regression function for fitting ordinal models 
+   ## instead.  
+   function [B, DEV] = mnrfit (X, Y, varargin)
+     ## Note that the logistic_regression function is only suitable when 
+     ## the outcome is ordinal, so we would need to use append 'model', 
+     ## 'ordinal' as a name-value pair in MATLAB when executing it's 
+     ## mnrfit function (see below)
+     [INTERCEPT, SLOPE, DEV] = logistic_regression (Y - 1, X, false);
+     B = cat (1, INTERCEPT, SLOPE);
+   end
+   stats_pkg = true;
+ catch
+   stats_pkg = false;
+   fprintf ('\nSkipping this demo...')
+   fprintf ('\nRequired feaures of the statistics package not found.\n\n');
+ end
+ ##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+
+ if (stats_pkg)
+
+   ##>>>>>>>>>>>>>>>>>>> This code block is the demo >>>>>>>>>>>>>>>>>>>>>>
+
+   ## Create the dataset
+   load carbig
+   X = [Acceleration Displacement Horsepower Weight];
+
+   ## The responses 1 - 4 correspond to the following classification:
+   ## 1:    < 19 miles per gallon
+   ## 2: 19 - 29 miles per gallon
+   ## 3: 29 - 39 miles per gallon
+   ## 4:   >= 39 miles per gallon
+   miles = [1,1,1,1,1,1,1,1,1,1,NaN,NaN,NaN,NaN,NaN,1,1,NaN,1,1,2,2,1,2, ...
+            2,2,2,2,2,2,2,1,1,1,1,2,2,2,2,NaN,2,1,1,2,1,1,1,1,1,1,1,1,1, ...
+            2,2,1,2,2,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1, ...
+            1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1, ...
+            1,1,2,2,2,1,2,2,2,1,1,3,2,2,2,1,2,2,1,2,2,2,1,3,2,3,2,1,1,1, ...
+            1,1,1,1,1,3,2,2,3,3,2,2,2,2,2,3,2,1,1,1,1,1,1,1,1,1,1,1,2,2, ...
+            1,3,2,2,2,2,2,2,1,3,2,2,2,2,2,3,2,2,2,2,2,1,1,1,1,2,2,2,2,3, ...
+            2,3,3,2,1,1,1,3,3,2,2,2,1,2,2,1,1,1,1,1,3,3,3,2,3,1,1,1,1,1, ...
+            2,2,1,1,1,1,1,3,2,2,2,3,3,3,3,2,2,2,4,3,3,4,3,2,2,2,2,2,2,2, ...
+            2,2,2,2,1,1,2,1,1,1,3,2,2,3,2,2,2,2,2,1,2,1,3,3,2,2,2,2,2,1, ...
+            1,1,1,1,1,2,1,3,3,3,2,2,2,2,2,3,3,3,3,2,2,2,3,4,3,3,3,2,2,2, ...
+            2,3,3,3,3,3,4,2,4,4,4,3,3,4,4,3,3,3,2,3,2,3,2,2,2,2,3,4,4,3, ...
+            3,3,3,3,3,3,3,3,3,3,3,3,3,2,NaN,3,2,2,2,2,2,1,2,2,3,3,3,2,2, ...
+            2,3,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3,3,2,2,4,3,2,3]';
+
+   ## Bootsrap confidence intervals for each logistic regression coefficient
+   bootknife ({X, miles}, 1999, ...
+               @(X, miles) mnrfit (X, miles, 'model', 'ordinal'));
+
+   ## Where the first three rows are the intercept terms, and the last 4 rows
+   ## are the slope coefficients. For each predictor, the slope coefficient
+   ## corresponds to how a unit change in the predictor impacts on the odds
+   ## across the (ordered) catagories, where each log-odds is:
+   ##
+   ##       ln ((P below) / (P above))
+   ##
+   ## Therefore, a positive slope value indicates that a unit increase in the
+   ## predictor increases the odds of running at fewer miles per gallon.
+
+   ##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ 
+ end
+

Produces the following output

+
Summary of nonparametric bootstrap estimates of bias and precision
+******************************************************************************
+
+Bootstrap settings: 
+ Function: @(X, miles) mnrfit (X, miles, 'model', 'ordinal')
+ Resampling method: Balanced, bootknife resampling 
+ Number of resamples (outer): 1999 
+ Number of resamples (inner): 0 
+ Confidence interval (CI) type: Bias-corrected and accelerated (BCa) 
+ Nominal coverage: 95%
+
+Bootstrap Statistics: 
+ original     bias         std_error    CI_lower     CI_upper  
+ -16.69       -0.5285      +2.069       -20.35       -12.67     
+ -11.72       -0.3726      +1.830       -15.03       -8.126     
+ -8.061       -0.2703      +1.730       -11.35       -4.674     
+ +0.1048      +0.005832    +0.09156     -0.08012     +0.2790    
+ +0.01034     +0.0006579   +0.006671    -0.002498    +0.02337   
+ +0.06452     +0.002303    +0.01631     +0.03293     +0.09395   
+ +0.001664    +1.103e-05   +0.0007399   +0.0002213   +0.003098
+
+

Demonstration 11

+
+

The following code

 
  ## Air conditioning failure times (x) in Table 1.2 of Davison A.C. and
@@ -567,7 +667,7 @@ 

Demonstration 10

## ---------------------------|----------|--------|--------|--------|-------|

gives an example of how 'bootknife' is used.

-

Demonstration 11

+

Demonstration 12

The following code

diff --git a/docs/function/bootlm.html b/docs/function/bootlm.html
index 91e9ceba..a748f0bc 100644
--- a/docs/function/bootlm.html
+++ b/docs/function/bootlm.html
@@ -3,7 +3,7 @@
 
   
   
-  
+  
   
   
   
@@ -480,7 +480,7 @@ 

Demonstration 1

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -female - male +10.80 -8.686 +30.29 .248 +female - male +10.80 -8.650 +30.25 .243 MODEL FORMULA (based on Wilkinson's notation): @@ -491,8 +491,8 @@

Demonstration 1

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -male +44.20 +32.47 +53.35 5 -female +55.00 +42.56 +67.59 6
+male +44.20 +32.51 +53.02 5 +female +55.00 +42.56 +67.82 6

and the following figure

@@ -537,7 +537,7 @@

Demonstration 2

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -after - before +1.460 +0.6532 +2.267 .003 +after - before +1.460 +0.6513 +2.269 .002 MODEL FORMULA (based on Wilkinson's notation): @@ -548,8 +548,8 @@

Demonstration 2

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -before +4.560 +4.124 +5.005 5 -after +6.020 +5.565 +6.474 5 +before +4.560 +4.108 +5.000 5 +after +6.020 +5.577 +6.478 5

and the following figure

@@ -591,9 +591,9 @@

Demonstration 3

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -st - al1 +7.000 +3.880 +10.12 <.001 -st - al2 +5.000 +2.530 +7.470 .001 -al1 - al2 -2.000 -4.907 +0.9069 .168 +st - al1 +7.000 +3.868 +10.13 <.001 +st - al2 +5.000 +2.542 +7.458 <.001 +al1 - al2 -2.000 -4.870 +0.8703 .170 MODEL FORMULA (based on Wilkinson's notation): @@ -604,9 +604,9 @@

Demonstration 3

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -st +84.00 +82.14 +85.69 8 -al1 +77.00 +75.01 +79.40 6 -al2 +79.00 +77.72 +80.48 6 +st +84.00 +82.09 +85.68 8 +al1 +77.00 +74.93 +79.40 6 +al2 +79.00 +77.72 +80.44 6

and the following figure

@@ -654,9 +654,9 @@

Demonstration 4

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -1 - 2 -2.000 -2.722 -1.278 <.001 -1 - 5 -3.200 -3.859 -2.541 <.001 -2 - 5 -1.200 -2.091 -0.3086 .013 +1 - 2 -2.000 -2.738 -1.262 <.001 +1 - 5 -3.200 -3.848 -2.552 <.001 +2 - 5 -1.200 -2.087 -0.3132 .012 MODEL FORMULA (based on Wilkinson's notation): @@ -667,9 +667,9 @@

Demonstration 4

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -1 +11.00 +10.67 +11.38 10 -2 +13.00 +12.55 +13.49 10 -5 +14.20 +13.75 +14.64 10 +1 +11.00 +10.63 +11.34 10 +2 +13.00 +12.51 +13.47 10 +5 +14.20 +13.77 +14.65 10

and the following figure

@@ -740,12 +740,12 @@

Demonstration 5

name coeff CI_lower CI_upper p-val -------------------------------------------------------------------------------- -(Intercept) +5.667 +4.791 +6.543 <.001 -brands_1 -1.333 -1.892 -0.7744 .009 -brands_2 -2.167 -3.122 -1.212 <.001 -popper_1 +1.167 +0.6018 +1.731 .018 -brands:popper_1 -0.3333 -1.082 +0.4150 .339 -brands:popper_2 -0.1667 -1.242 +0.9086 .730 +(Intercept) +5.667 +4.794 +6.539 <.001 +brands_1 -1.333 -1.898 -0.7691 .011 +brands_2 -2.167 -3.123 -1.210 <.001 +popper_1 +1.167 +0.5958 +1.738 .016 +brands:popper_1 -0.3333 -1.074 +0.4077 .338 +brands:popper_2 -0.1667 -1.260 +0.9266 .726 MODEL FORMULA (based on Wilkinson's notation): @@ -756,9 +756,9 @@

Demonstration 5

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -Gourmet - National +1.500 +1.130 +1.870 <.001 -Gourmet - Generic +2.250 +1.698 +2.802 <.001 -National - Generic +0.7500 +0.2120 +1.288 .009 +Gourmet - National +1.500 +1.131 +1.869 <.001 +Gourmet - Generic +2.250 +1.710 +2.790 <.001 +National - Generic +0.7500 +0.1981 +1.302 .011 MODEL FORMULA (based on Wilkinson's notation): @@ -769,9 +769,9 @@

Demonstration 5

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -Gourmet +6.250 +6.057 +6.435 6 -National +4.750 +4.561 +4.937 6 -Generic +4.000 +3.664 +4.314 6 +Gourmet +6.250 +6.066 +6.444 6 +National +4.750 +4.563 +4.937 6 +Generic +4.000 +3.681 +4.316 6 MODEL FORMULA (based on Wilkinson's notation): @@ -782,7 +782,7 @@

Demonstration 5

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -oil - air -1.000 -1.384 -0.6162 <.001 +oil - air -1.000 -1.384 -0.6160 <.001 MODEL FORMULA (based on Wilkinson's notation): @@ -793,8 +793,8 @@

Demonstration 5

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -oil +4.500 +4.318 +4.687 9 -air +5.500 +5.313 +5.682 9 +oil +4.500 +4.316 +4.691 9 +air +5.500 +5.309 +5.679 9

and the following figure

@@ -810,9 +810,9 @@

Demonstration 6

 
  ## Unbalanced two-way design (2x2). The data is from a study on the effects
- ## of gender and a college degree on starting salaries of company employees,
- ## in Maxwell, Delaney and Kelly (2018): Chapter 7, Table 15. The starting
- ## salaries are in units of 1000 dollars per annum.
+ ## of gender and a college degree on starting salaries of a sample of company
+ ## employees, in Maxwell, Delaney and Kelly (2018): Chapter 7, Table 15. The
+ ## starting salaries are in units of 1000 dollars per annum.
 
  salary = [24 26 25 24 27 24 27 23 15 17 20 16, ...
            25 29 27 19 18 21 20 21 22 19]';
@@ -890,13 +890,15 @@ 

Demonstration 6

{'gender', 'degree'}, 'dim', [1, 2], ... 'method', 'bayesian','prior', 'auto'); - ## Ah ha! So it seems that sample sizes are quite unbalanced here, with most - ## of the women in this company having a degree, while most of the men not. + ## Ah ha! So it seems that sample sizes are very unbalanced here, with most + ## of the women in this sample having a degree, while most of the men not. ## Since the regression coefficient indicated that a high starting salary is ## an outcome of having a degree, this observation likely explains why ## salaries where not significantly different between men and women when we ## ran the ANOVA with gender listed first in the model (i.e. not accounting - ## for whether employees had a college degree). + ## for whether employees had a college degree). Note that our inferences here + ## assume that the unbalanced samples sizes are representative of similar + ## imbalance in the company as a whole (i.e. the population). ## Since the interaction term (F(1,18) = 0.42) was not significant (p > 0.1), ## we might rather consider the hypotheses tested using type II sums-of- @@ -913,7 +915,7 @@

Demonstration 6

{'degree', 'gender'}, 'seed', 1); fprintf ('\nANOVA SUMMARY (with type II sums-of-squares for main effects)\n') - fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s (Gender)\n', ... + fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s (gender)\n', ... AOVSTAT1.DF(2), AOVSTAT1.DFE, AOVSTAT1.F(2), ... AOVSTAT1.PVAL(2), AOVSTAT1.MODEL{2}); @@ -921,7 +923,7 @@

Demonstration 6

'linear', 'display', 'off', 'varnames', ... {'gender', 'degree'}, 'seed', 1); - fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s (Degree)\n', ... + fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s (degree)\n', ... AOVSTAT2.DF(2), AOVSTAT2.DFE, AOVSTAT2.F(2), ... AOVSTAT2.PVAL(2), AOVSTAT2.MODEL{2}); @@ -990,8 +992,8 @@

Demonstration 6

ANOVA SUMMARY (with type II sums-of-squares for main effects) -F(1,19) = 11.31, p = 0.00481 for the model: salary ~ 1 + degree + gender (Gender) -F(1,19) = 101.13, p = 0.0001 for the model: salary ~ 1 + gender + degree (Degree)
+F(1,19) = 11.31, p = 0.00481 for the model: salary ~ 1 + degree + gender (gender) +F(1,19) = 101.13, p = 0.0001 for the model: salary ~ 1 + gender + degree (degree)

and the following figure

@@ -1004,6 +1006,132 @@

Demonstration 6

Demonstration 7

The following code

+
+
+ ## One-way design with continuous covariate. The data is from a study of the
+ ## additive effects of species and temperature on chirpy pulses of crickets,
+ ## from Stitch, The Worst Stats Text eveR
+
+ pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ...
+          98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ...
+          60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]';
+ temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ...
+         29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ...
+         21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]';
+ species = {'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' ...
+            'ex' 'ex' 'ex' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' ...
+            'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv'};
+
+ ## Perform ANCOVA (type I sums-of-squares)
+ ## Use 'anova' contrasts so that the continuous covariate is centered
+ [STATS, BOOTSTAT, AOVSTAT] = bootlm (pulse, {temp, species}, 'model', ...
+                           'linear', 'continuous', 1, 'display', 'off', ...
+                           'varnames', {'temp', 'species'}, ...
+                           'contrasts', 'anova', 'seed', 1);
+
+ fprintf ('\nANCOVA SUMMARY (with type I sums-of-squares)\n')
+ for i = 1:numel(AOVSTAT.F)
+   fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s\n', ...
+            AOVSTAT.DF(i), AOVSTAT.DFE, AOVSTAT.F(i), ...
+            AOVSTAT.PVAL(i), AOVSTAT.MODEL{i});
+ end
+
+ ## Perform ANCOVA (type II sums-of-squares)
+ ## Use 'anova' contrasts so that the continuous covariate is centered
+ [~, ~, AOVSTAT1] = bootlm (pulse, {temp, species}, 'model', ...
+                           'linear', 'continuous', 1, 'display', 'off', ...
+                           'varnames', {'temp', 'species'}, ...
+                           'contrasts', 'anova', 'seed', 1);
+
+ fprintf ('\nANOVA SUMMARY (with type II sums-of-squares)\n')
+ fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s (species)\n', ...
+            AOVSTAT1.DF(2), AOVSTAT1.DFE, AOVSTAT1.F(2), ...
+            AOVSTAT1.PVAL(2), AOVSTAT1.MODEL{2});
+
+ [~, ~, AOVSTAT2] = bootlm (pulse, {species, temp}, 'model', ...
+                           'linear', 'continuous', 2, 'display', 'off', ...
+                           'varnames', {'species', 'temp'}, ...
+                           'contrasts', 'anova', 'seed', 1);
+
+ fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s (temp)\n', ...
+            AOVSTAT2.DF(2), AOVSTAT2.DFE, AOVSTAT2.F(2), ...
+            AOVSTAT2.PVAL(2), AOVSTAT2.MODEL{2});
+
+ ## Estimate regression coefficients using 'anova' contrast coding 
+ STATS = bootlm (pulse, {temp, species}, 'model', 'linear', ...
+                           'continuous', 1, 'display', 'on', ...
+                           'varnames', {'temp', 'species'}, ...
+                           'contrasts', 'anova');
+
+ ## 95% confidence intervals and p-values for the differences in the mean of
+ ## chirpy pulses of ex ad niv species (computed by wild bootstrap).
+ STATS = bootlm (pulse, {temp, species}, 'model', 'linear', ...
+                           'continuous', 1, 'display', 'on', ...
+                           'varnames', {'temp', 'species'}, 'dim', 2, ...
+                           'posthoc', 'trt_vs_ctrl', 'contrasts', 'anova');
+
+ ## 95% credible intervals for the estimated marginal means of chirpy pulses
+ ## of ex and niv species (computed by Bayesian bootstrap).
+ STATS = bootlm (pulse, {temp, species}, 'model', 'linear', ...
+                           'continuous', 1, 'display', 'on', ...
+                           'varnames', {'temp', 'species'}, 'dim', 2, ...
+                           'method', 'bayesian', 'prior', 'auto', ...
+                           'contrasts', 'anova');
+

Produces the following output

+
ANCOVA SUMMARY (with type I sums-of-squares)
+F(1,28) = 2474.04, p = 0.0001 for the model: pulse ~ 1 + temp
+F(1,28) = 187.40, p = 0.0001 for the model: pulse ~ 1 + temp + species
+
+ANOVA SUMMARY (with type II sums-of-squares)
+F(1,28) = 187.40, p = 0.0001 for the model: pulse ~ 1 + temp + species (species)
+F(1,28) = 1371.35, p = 0.0001 for the model: pulse ~ 1 + species + temp (temp)
+
+MODEL FORMULA (based on Wilkinson's notation):
+
+pulse ~ 1 + temp + species
+
+MODEL COEFFICIENTS
+
+name                                   coeff       CI_lower    CI_upper    p-val
+--------------------------------------------------------------------------------
+(Intercept)                            +73.37      +72.70      +74.05      <.001
+temp                                   +3.603      +3.407      +3.799      <.001
+species_1                              -10.07      -11.41      -8.725      <.001
+
+
+MODEL FORMULA (based on Wilkinson's notation):
+
+pulse ~ 1 + temp + species
+
+MODEL POSTHOC COMPARISONS
+
+name                                   mean        CI_lower    CI_upper    p-adj
+--------------------------------------------------------------------------------
+niv - ex                               -10.07      -11.41      -8.716      <.001
+
+
+MODEL FORMULA (based on Wilkinson's notation):
+
+pulse ~ 1 + temp + species
+
+MODEL ESTIMATED MARGINAL MEANS
+
+name                                   mean        CI_lower    CI_upper        N
+--------------------------------------------------------------------------------
+ex                                     +78.41      +77.43      +79.39         14
+niv                                    +68.34      +67.61      +69.17         17
+

and the following figure

+

+ + + + +
Figure 1
+

+
+

Demonstration 8

+
+

The following code

 
  ## Unbalanced three-way design (3x2x2). The data is from a study of the
@@ -1140,107 +1268,6 @@ 

Demonstration 7

Figure 1 - - -

-
-

Demonstration 8

-
-

The following code

-
-
- ## One-way design with continuous covariate. The data is from a study of the
- ## additive effects of species and temperature on chirpy pulses of crickets,
- ## from Stitch, The Worst Stats Text eveR
-
- pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ...
-          98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ...
-          60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]';
- temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ...
-         29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ...
-         21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]';
- species = {'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' ...
-            'ex' 'ex' 'ex' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' ...
-            'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv'};
-
- ## Perform ANCOVA 
- ## Use 'anova' contrasts so that the continuous covariate is centered
- [STATS, BOOTSTAT, AOVSTAT] = bootlm (pulse, {temp, species}, 'model', ...
-                           'linear', 'continuous', 1, 'display', 'off', ...
-                           'varnames', {'temp', 'species'}, ...
-                           'contrasts', 'anova');
-
- fprintf ('ANCOVA SUMMARY\n')
- for i = 1:numel(AOVSTAT.F)
-   fprintf ('F(%u,%u) = %.2f, p = %.3g for the model: %s\n', ...
-            AOVSTAT.DF(i), AOVSTAT.DFE, AOVSTAT.F(i), ...
-            AOVSTAT.PVAL(i), AOVSTAT.MODEL{i});
- end
-
- ## Estimate regression coefficients using 'anova' contrast coding 
- STATS = bootlm (pulse, {temp, species}, 'model', 'linear', ...
-                           'continuous', 1, 'display', 'on', ...
-                           'varnames', {'temp', 'species'}, ...
-                           'contrasts', 'anova');
-
- ## 95% confidence intervals and p-values for the differences in the mean of
- ## chirpy pulses of ex ad niv species (computed by wild bootstrap).
- STATS = bootlm (pulse, {temp, species}, 'model', 'linear', ...
-                           'continuous', 1, 'display', 'on', ...
-                           'varnames', {'temp', 'species'}, 'dim', 2, ...
-                           'posthoc', 'trt_vs_ctrl', 'contrasts', 'anova');
-
- ## 95% credible intervals for the estimated marginal means of chirpy pulses
- ## of ex and niv species (computed by Bayesian bootstrap).
- STATS = bootlm (pulse, {temp, species}, 'model', 'linear', ...
-                           'continuous', 1, 'display', 'on', ...
-                           'varnames', {'temp', 'species'}, 'dim', 2, ...
-                           'method', 'bayesian', 'prior', 'auto', ...
-                           'contrasts', 'anova');
-

Produces the following output

-
ANCOVA SUMMARY
-F(1,28) = 2474.04, p = 0.0001 for the model: pulse ~ 1 + temp
-F(1,28) = 187.40, p = 0.0001 for the model: pulse ~ 1 + temp + species
-
-MODEL FORMULA (based on Wilkinson's notation):
-
-pulse ~ 1 + temp + species
-
-MODEL COEFFICIENTS
-
-name                                   coeff       CI_lower    CI_upper    p-val
---------------------------------------------------------------------------------
-(Intercept)                            +73.37      +72.70      +74.05      <.001
-temp                                   +3.603      +3.408      +3.797      <.001
-species_1                              -10.07      -11.41      -8.720      <.001
-
-
-MODEL FORMULA (based on Wilkinson's notation):
-
-pulse ~ 1 + temp + species
-
-MODEL POSTHOC COMPARISONS
-
-name                                   mean        CI_lower    CI_upper    p-adj
---------------------------------------------------------------------------------
-niv - ex                               -10.07      -11.43      -8.700      <.001
-
-
-MODEL FORMULA (based on Wilkinson's notation):
-
-pulse ~ 1 + temp + species
-
-MODEL ESTIMATED MARGINAL MEANS
-
-name                                   mean        CI_lower    CI_upper        N
---------------------------------------------------------------------------------
-ex                                     +78.41      +77.44      +79.41         14
-niv                                    +68.34      +67.58      +69.18         17
-

and the following figure

-

- - -
Figure 1

@@ -1320,8 +1347,8 @@

Demonstration 9

ANOVA / ANCOVA SUMMARY
 F(1,53) = 44.02, p = 0.0001 for the model: score ~ 1 + age
 F(2,53) = 19.74, p = 0.0001 for the model: score ~ 1 + age + exercise
-F(1,53) = 11.10, p = 0.00196 for the model: score ~ 1 + age + exercise + treatment
-F(2,53) = 4.45, p = 0.0159 for the model: score ~ 1 + age + exercise + treatment + exercise:treatment
+F(1,53) = 11.10, p = 0.00222 for the model: score ~ 1 + age + exercise + treatment
+F(2,53) = 4.45, p = 0.0147 for the model: score ~ 1 + age + exercise + treatment + exercise:treatment
 
 MODEL FORMULA (based on Wilkinson's notation):
 
@@ -1331,13 +1358,13 @@ 

Demonstration 9

name coeff CI_lower CI_upper p-val -------------------------------------------------------------------------------- -(Intercept) +84.58 +83.32 +85.84 <.001 -age +0.5036 +0.1828 +0.8243 .003 -exercise_1 +0.09497 -3.106 +3.296 .950 -exercise_2 -9.594 -12.82 -6.373 <.001 -treatment_1 +4.320 +1.611 +7.028 .002 -exercise:treatment_1 +0.1550 -6.443 +6.753 .961 -exercise:treatment_2 +8.218 +1.763 +14.67 .015 +(Intercept) +84.58 +83.29 +85.86 <.001 +age +0.5036 +0.1874 +0.8197 .003 +exercise_1 +0.09497 -3.118 +3.308 .955 +exercise_2 -9.594 -12.82 -6.364 <.001 +treatment_1 +4.320 +1.715 +6.924 .002 +exercise:treatment_1 +0.1550 -6.387 +6.697 .961 +exercise:treatment_2 +8.218 +1.728 +14.71 .014 MODEL FORMULA (based on Wilkinson's notation): @@ -1348,11 +1375,11 @@

Demonstration 9

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -mid, yes - lo, yes +0.01746 -5.361 +5.396 1.000 -hi, yes - lo, yes -13.70 -18.49 -8.915 <.001 -lo, no - lo, yes +1.529 -3.283 +6.341 1.000 -mid, no - lo, yes +1.701 -3.118 +6.520 1.000 -hi, no - lo, yes -3.957 -9.147 +1.234 .514 +mid, yes - lo, yes +0.01746 -5.617 +5.652 1.000 +hi, yes - lo, yes -13.70 -18.46 -8.949 <.001 +lo, no - lo, yes +1.529 -3.395 +6.452 1.000 +mid, no - lo, yes +1.701 -3.195 +6.597 1.000 +hi, no - lo, yes -3.957 -9.130 +1.217 .502 MODEL FORMULA (based on Wilkinson's notation): @@ -1363,12 +1390,12 @@

Demonstration 9

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -lo, yes +86.98 +83.34 +90.47 10 -mid, yes +87.00 +83.33 +90.39 10 -hi, yes +73.28 +70.56 +76.23 10 -lo, no +88.51 +86.09 +91.32 10 -mid, no +88.68 +86.31 +91.15 10 -hi, no +83.02 +79.71 +86.50 10
+lo, yes +86.98 +83.41 +90.50 10 +mid, yes +87.00 +83.28 +90.37 10 +hi, yes +73.28 +70.48 +76.11 10 +lo, no +88.51 +86.06 +91.44 10 +mid, no +88.68 +86.27 +91.09 10 +hi, no +83.02 +79.72 +86.48 10

and the following figure

@@ -1416,11 +1443,11 @@

Demonstration 10

name coeff CI_lower CI_upper p-val -------------------------------------------------------------------------------- -(Intercept) +19.40 +18.43 +20.37 <.001 -score_1 -9.330 -11.32 -7.340 <.001 -score_2 -5.000 -7.791 -2.209 .001 -score_3 -8.000 -11.48 -4.524 <.001 -score_4 -8.000 -11.05 -4.953 <.001 +(Intercept) +19.40 +18.42 +20.38 <.001 +score_1 -9.330 -11.30 -7.359 <.001 +score_2 -5.000 -7.877 -2.123 .002 +score_3 -8.000 -11.50 -4.500 <.001 +score_4 -8.000 -11.04 -4.958 <.001 MODEL FORMULA (based on Wilkinson's notation): @@ -1431,11 +1458,11 @@

Demonstration 10

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -1 +10.00 +8.137 +12.00 8 -2 +18.00 +16.01 +20.68 5 -3 +19.00 +16.99 +21.01 8 -4 +21.00 +19.08 +23.02 7 -5 +29.00 +26.95 +30.94 9 +1 +10.00 +8.169 +11.90 8 +2 +18.00 +16.01 +20.71 5 +3 +19.00 +17.02 +21.06 8 +4 +21.00 +19.01 +22.93 7 +5 +29.00 +26.94 +30.90 9

and the following figure

@@ -1632,27 +1659,27 @@

Demonstration 13

PE = - 20.477 - 16.800 - 16.340 - 16.220 - 15.191 + 20.477 + 16.8 + 16.34 + 16.22 + 15.191 PRESS = - 1023.83 - 840.00 - 817.01 - 811.02 - 759.53 + 1023.8 + 840 + 817.01 + 811.02 + 759.53 RSQ_pred = - -0.040869 - 0.146016 - 0.169388 - 0.175483 - 0.227832 + -0.040869 + 0.14602 + 0.16939 + 0.17548 + 0.22783

Package: statistics-resampling

diff --git a/docs/function/bootmode.html b/docs/function/bootmode.html index ca733e20..e9d736a9 100644 --- a/docs/function/bootmode.html +++ b/docs/function/bootmode.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/bootstrp.html b/docs/function/bootstrp.html index 79754ba3..7885fcb0 100644 --- a/docs/function/bootstrp.html +++ b/docs/function/bootstrp.html @@ -3,7 +3,7 @@ - + @@ -104,56 +104,56 @@

Demonstration 1

Produces the following output

bootstat =
 
-   31.077
-   26.615
-   29.731
-   29.231
-   27.885
-   28.962
-   29.231
-   28.654
-   35.615
-   27.654
-   26.462
-   30.885
-   31.731
-   29.615
-   28.308
-   29.538
-   29.923
-   30.115
-   32.538
-   28.962
-   31.385
-   25.231
-   30.154
-   26.115
-   25.231
-   25.962
-   33.654
-   33.269
-   31.154
-   34.385
-   30.962
-   30.808
-   29.192
-   29.038
-   25.769
-   30.192
-   30.231
-   28.192
-   28.808
-   31.269
-   27.692
-   28.231
-   32.346
-   31.385
-   28.500
-   31.038
-   28.192
-   33.308
-   30.231
-   28.038
+       31.077
+       26.615
+       29.731
+       29.231
+       27.885
+       28.962
+       29.231
+       28.654
+       35.615
+       27.654
+       26.462
+       30.885
+       31.731
+       29.615
+       28.308
+       29.538
+       29.923
+       30.115
+       32.538
+       28.962
+       31.385
+       25.231
+       30.154
+       26.115
+       25.231
+       25.962
+       33.654
+       33.269
+       31.154
+       34.385
+       30.962
+       30.808
+       29.192
+       29.038
+       25.769
+       30.192
+       30.231
+       28.192
+       28.808
+       31.269
+       27.692
+       28.231
+       32.346
+       31.385
+         28.5
+       31.038
+       28.192
+       33.308
+       30.231
+       28.038
 
 ans = 2.3366
diff --git a/docs/function/bootwild.html b/docs/function/bootwild.html index eceb4177..eaa2bc05 100644 --- a/docs/function/bootwild.html +++ b/docs/function/bootwild.html @@ -3,7 +3,7 @@ - + @@ -211,8 +211,8 @@

Demonstration 2

Test Statistics: original std_err CI_lower CI_upper t-stat p-val FPR - +175.5 +2.502 +169.7 +181.3 +70.1 <.001 .010 - +0.1904 +0.08261 +0.001630 +0.3792 +2.31 .049 .286 + +175.5 +2.502 +169.8 +181.2 +70.1 <.001 .010 + +0.1904 +0.08261 +0.003534 +0.3773 +2.31 .047 .280

Package: statistics-resampling

diff --git a/docs/function/cor.html b/docs/function/cor.html index f2a1b0d6..c343b4da 100644 --- a/docs/function/cor.html +++ b/docs/function/cor.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/credint.html b/docs/function/credint.html index b5f8b66a..4f56a490 100644 --- a/docs/function/credint.html +++ b/docs/function/credint.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/deffcalc.html b/docs/function/deffcalc.html index 2b490a8e..4303f4a9 100644 --- a/docs/function/deffcalc.html +++ b/docs/function/deffcalc.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/images/boot1way_601.png b/docs/function/images/boot1way_601.png index 3f29d063..b3e04232 100644 Binary files a/docs/function/images/boot1way_601.png and b/docs/function/images/boot1way_601.png differ diff --git a/docs/function/images/boot1way_701.png b/docs/function/images/boot1way_701.png index 16c98d85..58875d7c 100644 Binary files a/docs/function/images/boot1way_701.png and b/docs/function/images/boot1way_701.png differ diff --git a/docs/function/images/bootlm_701.png b/docs/function/images/bootlm_701.png index a40998d8..c475c394 100644 Binary files a/docs/function/images/bootlm_701.png and b/docs/function/images/bootlm_701.png differ diff --git a/docs/function/images/bootlm_801.png b/docs/function/images/bootlm_801.png index c475c394..a40998d8 100644 Binary files a/docs/function/images/bootlm_801.png and b/docs/function/images/bootlm_801.png differ diff --git a/docs/function/randtest2.html b/docs/function/randtest2.html index 930aa80a..1e463905 100644 --- a/docs/function/randtest2.html +++ b/docs/function/randtest2.html @@ -3,7 +3,7 @@ - + @@ -151,9 +151,9 @@

Demonstration 1

@(x, y) log (var (y) ./ var (x)))

Produces the following output

-
pval = 0.3600
-pval = 0.2930
-pval = 0.3168
+
pval = 0.3562
+pval = 0.277
+pval = 0.30584

Demonstration 2

@@ -181,9 +181,9 @@

Demonstration 2

Produces the following output

-
pval = 0.1289
+
pval = 0.12891
 pval = 0.037109
-pval = 0.5117
+pval = 0.51172

Demonstration 3

@@ -204,8 +204,8 @@

Demonstration 3

pval = randtest2 ([X GX], [Y GY], false, 5000)

Produces the following output

-
pval = 6.2154e-04
-pval = 0.2000
+
pval = 0.0008
+pval =   0.2

Demonstration 4

@@ -226,8 +226,8 @@

Demonstration 4

pval = randtest2 ([X GX], [Y GY], true, 5000)

Produces the following output

-
pval = 1.6000e-03
-pval = 0.2500
+
pval = 0.0012
+pval =  0.25

Package: statistics-resampling

diff --git a/docs/function/sampszcalc.html b/docs/function/sampszcalc.html index ffdb55c5..057eb839 100644 --- a/docs/function/sampszcalc.html +++ b/docs/function/sampszcalc.html @@ -3,7 +3,7 @@ - + @@ -109,7 +109,7 @@

Demonstration 1

n = sampszcalc ('t', 0.8)

Produces the following output

-
n = 15
+
n =    15

Demonstration 2

@@ -121,7 +121,7 @@

Demonstration 2

n = sampszcalc ('t2', 0.8)

Produces the following output

-
n = 26
+
n =    26

Demonstration 3

@@ -133,7 +133,7 @@

Demonstration 3

n = sampszcalc ('t2', 0.8, [], [], [], 1.5)

Produces the following output

-
n = 39
+
n =    39

Demonstration 4

@@ -145,7 +145,7 @@

Demonstration 4

n = sampszcalc ('z2', 0.8)

Produces the following output

-
n = 25
+
n =    25

Demonstration 5

@@ -157,7 +157,7 @@

Demonstration 5

n = sampszcalc ('r', 0.5)

Produces the following output

-
n = 30
+
n =    30

Package: statistics-resampling

diff --git a/docs/function/smoothmad.html b/docs/function/smoothmad.html index 5b29df6a..fbe0e3d1 100644 --- a/docs/function/smoothmad.html +++ b/docs/function/smoothmad.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/smoothmedian.html b/docs/function/smoothmedian.html index 5ac85b47..75c785a9 100644 --- a/docs/function/smoothmedian.html +++ b/docs/function/smoothmedian.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function_reference.html b/docs/function_reference.html index 6c484c54..a59152fc 100644 --- a/docs/function_reference.html +++ b/docs/function_reference.html @@ -3,7 +3,7 @@ - + diff --git a/docs/index.html b/docs/index.html index 75eb638a..52427deb 100644 --- a/docs/index.html +++ b/docs/index.html @@ -3,7 +3,7 @@ - +