-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
executable file
·62 lines (50 loc) · 2.86 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import numpy as np
from tqdm import tqdm
import util
import dataset_warp
import datasets_util
def test(model, predictions, test_dataset, num_reranked_predictions=5,
recall_values=[1, 5, 10, 20], test_batch_size=8):
"""Compute the test by warping the query-prediction pairs.
Parameters
----------
model : network.Network
predictions : np.array of int, containing the first 20 predictions for each query,
with shape [queries_num, 20].
test_dataset : dataset_geoloc.GeolocDataset, which contains the test-time images (queries and gallery).
num_reranked_predictions : int, how many predictions to re-rank.
recall_values : list of int, recalls to compute (e.g. R@1, R@5...).
test_batch_size : int.
Returns
-------
recalls : np.array of int, containing R@1, R@5, r@10, r@20.
recalls_pretty_str : str, pretty-printed recalls
"""
model = model.eval()
reranked_predictions = predictions.copy()
with torch.no_grad():
for num_q in tqdm(range(test_dataset.queries_num), desc="Testing", ncols=100):
dot_prods_wqp = np.zeros((num_reranked_predictions))
query_path = test_dataset.queries_paths[num_q]
for i1 in range(0, num_reranked_predictions, test_batch_size):
batch_indexes = list(range(num_reranked_predictions))[i1:i1+test_batch_size]
current_batch_size = len(batch_indexes)
query = datasets_util.open_image_and_apply_transform(query_path)
query_repeated_twice = torch.repeat_interleave(query.unsqueeze(0), current_batch_size, 0)
preds = []
for i in batch_indexes:
pred_path = test_dataset.gallery_paths[predictions[num_q, i]]
preds.append(datasets_util.open_image_and_apply_transform(pred_path))
preds = torch.stack(preds)
warped_pair = dataset_warp.compute_warping(model, query_repeated_twice.cuda(), preds.cuda())
q_features = model("features_extractor", [warped_pair[0], "local"])
p_features = model("features_extractor", [warped_pair[1], "local"])
# Sum along all axes except for B. wqp stands for warped query-prediction
dot_prod_wqp = (q_features * p_features).sum(list(range(1, len(p_features.shape)))).cpu().numpy()
dot_prods_wqp[i1:i1+test_batch_size] = dot_prod_wqp
reranking_indexes = dot_prods_wqp.argsort()[::-1]
reranked_predictions[num_q, :num_reranked_predictions] = predictions[num_q][reranking_indexes]
ground_truths = test_dataset.get_positives()
recalls, recalls_pretty_str = util.compute_recalls(reranked_predictions, ground_truths, test_dataset, recall_values)
return recalls, recalls_pretty_str