-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_geoloc.py
executable file
·72 lines (56 loc) · 3.25 KB
/
dataset_geoloc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import numpy as np
from glob import glob
from os.path import join
import torch.utils.data as data
from sklearn.neighbors import NearestNeighbors
import datasets_util
class GeolocDataset(data.Dataset):
def __init__(self, datasets_folder="datasets", dataset_name="pitts30k", split="train", positive_dist_threshold=25):
"""
Parameters
----------
datasets_folder : str, path of the folder with the datasets.
dataset_name : str, name of the folder with the dataset within datasets_folder.
split : str, split to use among train, val or test.
positive_dist_threshold : int, the threshold for positives (in meters).
The images should be located at these two locations:
{datasets_folder}/{dataset_name}/images/{split}/gallery/*.jpg
{datasets_folder}/{dataset_name}/images/{split}/queries/*.jpg
"""
super().__init__()
self.dataset_name = dataset_name
self.dataset_folder = join(datasets_folder, dataset_name, "images", split)
if not os.path.exists(self.dataset_folder):
raise FileNotFoundError(f"Folder {self.dataset_folder} does not exist")
#### Read paths and UTM coordinates for all images.
gallery_folder = join(self.dataset_folder, "gallery")
queries_folder = join(self.dataset_folder, "queries")
if not os.path.exists(gallery_folder):
raise FileNotFoundError(f"Folder {gallery_folder} does not exist")
if not os.path.exists(queries_folder):
raise FileNotFoundError(f"Folder {queries_folder} does not exist")
self.gallery_paths = sorted(glob(join(gallery_folder, "**", "*.jpg"), recursive=True))
self.queries_paths = sorted(glob(join(queries_folder, "**", "*.jpg"), recursive=True))
# The format must be path/to/file/@utm_easting@utm_northing@[email protected]
self.gallery_utms = np.array([(path.split("@")[1], path.split("@")[2]) for path in self.gallery_paths]).astype(np.float)
self.queries_utms = np.array([(path.split("@")[1], path.split("@")[2]) for path in self.queries_paths]).astype(np.float)
# Find soft_positives_per_query, which are within positive_dist_threshold (deafult 25 meters)
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.gallery_utms)
self.soft_positives_per_query = knn.radius_neighbors(self.queries_utms,
radius=positive_dist_threshold,
return_distance=False)
self.images_paths = list(self.gallery_paths) + list(self.queries_paths)
self.gallery_num = len(self.gallery_paths)
self.queries_num = len(self.queries_paths)
def __getitem__(self, index):
image_path = self.images_paths[index]
img = datasets_util.open_image_and_apply_transform(image_path)
return img, index
def __len__(self):
return len(self.images_paths)
def __repr__(self):
return f"< {self.__class__.__name__}, {self.dataset_name} - #gallery: {self.gallery_num}; #queries: {self.queries_num} >"
def get_positives(self):
return self.soft_positives_per_query