-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
91 lines (66 loc) · 3.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import time
import preprocess
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
def KNN(train_X, train_y, k):
clf = KNeighborsClassifier(n_neighbors = k)
clf.fit(train_X, train_y)
return clf
def SVM(train_X, train_y):
clf = SVC(kernel = 'rbf', random_state = 0, gamma = 1, C = 1) ### need change values here
clf.fit(train_X, train_y)
return clf
def Rand_Forest(train_X, train_y):
clf = RandomForestClassifier()
clf.fit(train_X, train_y)
return clf
if __name__ == '__main__':
# loading from preprocess.py
train_X , train_y = preprocess.main(True)
test_X , test_y = preprocess.main(False)
# sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)[source]
# sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)[source]
# ---------------- KNN ---------------- #
start_time = time.time()
knn_classifier = KNN(train_X, train_y, k = 10) # create KNN classifier ### need change k here
end_time = time.time()
y_train_pred = knn_classifier.predict(train_X)
y_test_pred = knn_classifier.predict(test_X)
print("Training Time: %s seconds" % (end_time - start_time))
print("Accuracy of KNN for training: " , accuracy_score(train_y, y_train_pred))
print("Accuracy of KNN for testing: " , accuracy_score(test_y, y_test_pred))
#print("Precision of KNN for training: ", precision_score(train_y, y_train_pred), average='weighted')
#print("Precision of KNN for testing: ", precision_score(test_y, y_test_pred), average='weighted')
#print("Recall of KNN for training: ", recall_score(train_y, y_train_pred, average='weighted'))
#print("Recall of KNN for testing: ", recall_score(test_y, y_test_pred, average='weighted'))
# ---------------- SVM ---------------- #
start_time = time.time()
svm_classifier = SVM(train_X, train_y) # create SVM classifier
end_time = time.time()
y_train_pred = svm_classifier.predict(train_X)
y_test_pred = svm_classifier.predict(test_X)
print("Training Time: %s seconds" % (end_time - start_time))
print("Accuracy of SVM for training: " , accuracy_score(train_y, y_train_pred))
print("Accuracy of SVM for testing: " , accuracy_score(test_y, y_test_pred))
print("Precision of SVM for training: ", precision_score(train_y, y_train_pred, average='weighted'))
print("Precision of SVM for testing: ", precision_score(test_y, y_test_pred, average='weighted'))
print("Recall of SVM for training: ", recall_score(train_y, y_train_pred, average='weighted'))
print("Recall of SVM for testing: ", recall_score(test_y, y_test_pred, average='weighted'))
# ----------- Random Forest ----------- #
start_time = time.time()
rfc_classifier = Rand_Forest(train_X, train_y) # create random forest classifier
end_time = time.time()
y_training_pred = rfc_classifier.predict(train_X)
y_test_pred = rfc_classifier.predict(test_X)
print("Training Time: %s seconds" % (end_time - start_time))
print("Accuracy of Rand Forest for training: ", accuracy_score(train_y, y_training_pred))
print("Accuracy of Rand Forest for testing: ", accuracy_score(test_y, y_test_pred))
print("Precision of Rand Forest for training: ", precision_score(train_y, y_training_pred, average='weighted'))
print("Precision of Rand Forest for testing: ", precision_score(test_y, y_test_pred, average='weighted'))
print("Recall of Rand Forest for training: ", recall_score(train_y, y_training_pred, average='weighted'))
print("Recall of Rand Forest for testing: ", recall_score(test_y, y_test_pred, average='weighted'))