forked from mjzzz-tech/-BNFA-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbird_sound_train.py
286 lines (241 loc) · 9.51 KB
/
bird_sound_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# 本文件用于鸟声识别模型的训练
import os
import time
import random
import warnings
from utils import get_spectrograms
warnings.filterwarnings(action='ignore')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.parallel
from torch.autograd import Variable
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
from torchvision import datasets, transforms
from sklearn.utils import class_weight
from imblearn.under_sampling import RandomUnderSampler
from torchsampler import ImbalancedDatasetSampler
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
import pandas as pd
import librosa
import numpy as np
import torchvision.transforms as transforms
from sklearn.utils import shuffle
from PIL import Image
from tqdm import tqdm
from torchinfo import summary
from cbam import CBAM_ResNet18
from noise_filtering_algorithm import noise_filtering
# 全局变量
RANDOM_SEED = 1337
SAMPLE_RATE = 32000
SIGNAL_LENGTH = 5 # seconds
SPEC_SHAPE = (224, 224) # height x width
FMIN = 20
FMAX = 16000
# Load metadata file
train = pd.read_csv('/kaggle/input/birdclef-2023/train_metadata.csv')
train = train.query('rating>=4')
birds_count = {}
for bird_species, count in zip(train.primary_label.unique(),
train.groupby('primary_label')['primary_label'].count().values):
birds_count[bird_species] = count
# 挑选出最具有代表性的鸟类
most_represented_birds = [key for key, value in birds_count.items() if value >= 197]
input_dir = '/kaggle/input/birdclef-2023/train_audio/'
output_dir = '/kaggle/working/melspectrogram_dataset/'
samples = []
# 使用 tqdm 包装 os.walk() 函数,显示进度条
since = time.time()
for root, dirs, files in os.walk(input_dir):
for file in files:
audio_file_path = os.path.join(root, file)
bird_type = root.replace("/kaggle/input/birdclef-2023/train_audio/", "")
if bird_type in most_represented_birds:
samples += get_spectrograms(audio_file_path, bird_type, output_dir)
time_elapsed = time.time() - since
print('Preprocess complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
# print(samples)
str_samples = ','.join(samples)
TRAIN_SPECS = shuffle(samples, random_state=RANDOM_SEED)
filename = open('a.txt', 'w')
filename.write(str_samples)
filename.close()
# print(samples)
str_samples = ','.join(samples)
TRAIN_SPECS = shuffle(samples, random_state=RANDOM_SEED)
filename = open('a.txt', 'w')
filename.write(str_samples)
filename.close()
from sklearn.model_selection import train_test_split
import shutil
filename = open('a.txt', 'r')
str_samples = filename.read()
filename.close()
str_samples = str_samples.replace("\\", "/")
samples = str_samples.split(',')
trainval_files, test_files = train_test_split(samples, test_size=0.1, random_state=42)
# 自定义训练集和验证集的路径,注意形式一致
train_dir = '/kaggle/working/train/'
val_dir = '/kaggle/working/val/'
def copyfiles(file, dir):
filelist = file.split('/')
filename = filelist[-1]
lable = filelist[-2]
cpfile = dir + "/" + lable
if not os.path.exists(cpfile):
os.makedirs(cpfile)
cppath = cpfile + '/' + filename
shutil.copy(file, cppath)
for file in trainval_files:
copyfiles(file, train_dir)
for file in test_files:
copyfiles(file, val_dir)
# 设置超参数
momentum = 0.9
BATCH_SIZE = 16
class_num = 18
EPOCHS = 50
lr = 1e-4
use_gpu = True
net_name = 'resnet18'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 定义数据转换
transform2 = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
transform1 = transforms.Compose([
transforms.Resize(224),
transforms.RandomResizedCrop(size=224, scale=(0.67, 1)),
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 创建 ImageFolder 数据集
dataset_train = datasets.ImageFolder('/kaggle/working/train/', transform1)
dataset_val = datasets.ImageFolder('/kaggle/working/val/', transform2)
# 获取训练集和验证集的标签
train_labels = [label for _, label in dataset_train.samples]
val_labels = [label for _, label in dataset_val.samples]
# 创建 DataLoader 时指定采样器
train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, sampler=ImbalancedDatasetSampler(dataset_train),
drop_last=True)
val_loader = DataLoader(dataset_val, batch_size=BATCH_SIZE, sampler=ImbalancedDatasetSampler(dataset_val),
drop_last=True)
dset_sizes = len(dataset_train)
dset_sizes_val = len(dataset_val)
print(dset_sizes, dset_sizes_val)
model = CBAM_ResNet18()
'''
import torchvision.models as models
model = models.resnet18(pretrained=False)
# 修改最后线性层的输出通道数
model.fc = nn.Linear(512, len(most_represented_birds))
'''
def exp_lr_scheduler(optimizer, epoch, init_lr=4e-5, lr_decay_epoch=10):
"""Decay learning rate by a f# model_out_path ="./model/W_epoch_{}.pth".format(epoch)
# torch.save(model_W, model_out_path) actor of 0.1 every lr_decay_epoch epochs."""
lr = init_lr * (0.8 ** (epoch // lr_decay_epoch))
print('LR is set to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
def train_model(model_ft, criterion, optimizer, lr_scheduler, num_epochs=50):
train_loss = []
best_acc = 0.0
# model_ft.train(True)
for epoch in range(num_epochs):
since = time.time()
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# 进行模型训练
model_ft.train()
optimizer = lr_scheduler(optimizer, epoch)
running_loss = 0.0
running_corrects = 0
count = 0
for data in train_loader:
inputs, labels = data
labels = torch.squeeze(labels.type(torch.LongTensor))
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = model_ft(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs.data, 1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
count += 1
if count % 240 == 0 or outputs.size()[0] < BATCH_SIZE:
print('Epoch:{}: loss:{:.3f}'.format(epoch, loss.item()))
train_loss.append(loss.item())
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dset_sizes
epoch_acc = running_corrects.double() / dset_sizes
print('Train_Loss: {:.4f} Train_Acc: {:.4f}'.format(
epoch_loss, epoch_acc))
# 进行模型验证
model_ft.eval()
with torch.no_grad(): # 无梯度,不进行调优
val_loss = 0.0
val_corrects = 0
val_count = 0
for data in val_loader:
inputs, labels = data
labels = torch.squeeze(labels.type(torch.LongTensor))
inputs = inputs.to("cuda")
labels = labels.to("cuda")
outputs = model(inputs)
loss = criterion(outputs, labels)
preds = torch.max(outputs, dim=1)[1]
val_loss += loss.item() * inputs.size(0)
val_corrects += torch.sum(preds == labels)
val_count += 16
val_loss = val_loss / dset_sizes_val
val_acc = val_corrects.double() / dset_sizes_val
print('Val_Loss: {:.4f} Val_Acc: {:.4f}'.format(
val_loss, val_acc))
# save model
if epoch % 2 == 0:
save_path = '/kaggle/working/model' + '_v' + str(epoch) + '.pth'
torch.save(model_ft.state_dict(), save_path)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
criterion = nn.CrossEntropyLoss()
if use_gpu:
model = model.cuda()
criterion = criterion.cuda()
optimizer = optim.Adam((model.parameters()), lr=lr, weight_decay=1e-4)
# 模型的训练
train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=EPOCHS)
# 进行模型验证
model.eval()
with torch.no_grad(): # 无梯度,不进行调优
val_loss = 0.0
val_corrects = 0
val_count = 0
for data in val_loader:
inputs, labels = data
labels = torch.squeeze(labels.type(torch.LongTensor))
inputs = inputs.to("cuda")
labels = labels.to("cuda")
outputs = model(inputs)
loss = criterion(outputs, labels)
preds = torch.max(outputs, dim=1)[1]
val_loss += loss.item() * inputs.size(0)
val_corrects += torch.sum(preds == labels)
val_count += 16
print(torch.sum(preds == labels))
val_loss = val_loss / val_count
val_acc = val_corrects.double() / val_count
print('Val_Loss: {:.4f} Val_Acc: {:.4f}'.format(val_loss, val_acc))