Make sure all your processed image files (L-band and C-band, for instance) are in the same folder (e.g. denoised_resampled). They should have two channels, HH and HV.
Make sure your label files (.shp) are in the same folder (e.g. Sea_Ice-labels).
The following paths were used for my local machine, for your reference:
- Raster files: D:/jema2085/data/Belgica_Bank/denoised_resampled
- Shp files: D:/jema2085/data/Belgica_Bank/MET_BB_Polar_shapefiles/Belgica_Bank-20240506T141908Z-001/Belgica_Bank/Sea_Ice-labels
- Rasterized label files (after running rasterize.py): D:/jema2085/data/Belgica_Bank/labels_rasterized/{raterized type}
- Excel files with training paths: D:/jema2085/data/Belgica_Bank/results
- Training outputs: D:/jema2085/data/Belgica_Bank/results/{rasterized type}/{training split}
- Testing results: D:/jema2085/data/Belgica_Bank/results/{rasterized type}/{training split}
- Averaged testing results (classification report + confusion matrix): D:/jema2085/data/Belgica_Bank/results/{rasterized type}
- Run
python utils/clip_half_BB.py -c utils/clip_half_config_BB.ini
(e.g. rasterized type == SA)
- Run
python utils/raterize.py -c utils/config-MET-{rasterized type}-dual.ini
(e.g. rasterized type == SA)
- Run
python main_single.py -c configs/{rasterized type}_single_{image type}.ini
(e.g. rasterized type == SA, image type == alos2)
- Run
python evaluate_single.py -c configs/eval_{rasterized type}_{image type}.ini
(e.g. rasterized type == SA, image type == alos2)
- Run
python generate_avg_metrics.py -c configs/metrics_{rasterized type}_single_{image type}.ini
(e.g. rasterized type == SA, image type == alos2)
- Run
python main_single.py -c configs/{rasterized type}_single_{image type}.ini
(e.g. rasterized type == SA, image type == s1)
- Run
python evaluate_single.py -c configs/eval_{rasterized type}_{image type}.ini
(e.g. rasterized type == SA, image type == s1)
- Run
python generate_avg_metrics.py -c configs/metrics_{rasterized type}_single_{image type}.ini
(e.g. rasterized type == SA, image type == s1)
- Run
python main_dual_early.py -c configs/{rasterized type}_dual_early.ini
(e.g. rasterized type == SA)
- Run
python generate_avg_metrics.py -c configs/metrics_{rasterized type}_dual_early.ini
(e.g. rasterized type == SA)
- Run
python main_dual_mid.py -c configs/{rasterized type}_dual_mid.ini
(e.g. rasterized type == SA)
Generate an averaged classification report and confusion matrix. There should be three versions that can be generated,
one testing with both images, one testing with only the first image type, and one testing with only the second image type
- Run
python generate_avg_metrics.py -c configs/metrics_{rasterized type}_dual_mid.ini
(e.g. rasterized type == SA) - Run
python generate_avg_metrics.py -c configs/metrics_{rasterized type}_dual_mid_{image type}.ini
(e.g. rasterized type == SA, image type == alos2) - Run
python generate_avg_metrics.py -c configs/metrics_{rasterized type}_dual_mid_{image type}.ini
(e.g. rasterized type == SA, image type == s1)