diff --git a/examples/ml_pipeline.ipynb b/examples/ml_pipeline.ipynb new file mode 100644 index 00000000..d6bebdf9 --- /dev/null +++ b/examples/ml_pipeline.ipynb @@ -0,0 +1,207 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ML Pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import geoengine as ge\n", + "from geoengine.ml import MlModelConfig\n", + "\n", + "from geoengine_openapi_client.models import MlModelMetadata, RasterDataType\n", + "\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "import numpy as np\n", + "from skl2onnx import to_onnx\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "ge.initialize(\"http://localhost:3030/api\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train a dummy model (TODO: feed with data from Geo Engine)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions: [33 42]\n" + ] + } + ], + "source": [ + "np.random.seed(0) \n", + "X = np.random.rand(100, 2).astype(np.float32) # 100 instances, 2 features\n", + "y = np.where(X[:, 0] > X[:, 1], 42, 33) # 1 if feature 0 > feature 42, else 33\n", + "\n", + "clf = DecisionTreeClassifier()\n", + "clf.fit(X, y)\n", + "\n", + "test_samples = np.array([[0.1, 0.2], [0.2, 0.1]])\n", + "predictions = clf.predict(test_samples)\n", + "print(\"Predictions:\", predictions)\n", + "\n", + "# Convert into ONNX format.\n", + "from skl2onnx import to_onnx\n", + "\n", + "onx = to_onnx(clf, X[:1], target_opset=9) # target_opset is the ONNX version to use" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Register it with Geo Engine" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "model_name = f\"{ge.get_session().user_id}:decision_tree\"\n", + "\n", + "metadata = MlModelMetadata(\n", + " file_name=\"model.onnx\",\n", + " input_type=RasterDataType.F32,\n", + " num_input_bands=2,\n", + " output_type=RasterDataType.I64,\n", + ")\n", + "\n", + "model_config = MlModelConfig(\n", + " name=model_name,\n", + " metadata=metadata,\n", + " display_name=\"Decision Tree\",\n", + " description=\"A simple decision tree model\",\n", + ")\n", + "\n", + "ge.register_ml_model(onnx_model=onx, model_config=model_config)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Apply model using the ONNX operator\n", + "\n", + "The image shows rise and fall in ndvi in 2014-04 with respect to the previous month." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/michael/git/geoengine-python/env/lib/python3.10/site-packages/owslib/coverage/wcs110.py:85: FutureWarning: The behavior of this method will change in future versions. Use specific 'len(elem)' or 'elem is not None' test instead.\n", + " elem = self._capabilities.find(self.ns.OWS('ServiceProvider')) or self._capabilities.find(self.ns.OWS('ServiceProvider')) # noqa\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAHHCAYAAABp4oiFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDo0lEQVR4nO2deXwURfr/P5NAJkCYECEksIRwBwMEJK4YD1SICYiIK4q7snL8WA8WL3AVsirggUFxFQ/A44sRT1xQdtUVkRuVcEXACHIKEoGQdZUMBAiQ6d8fOGNPp6q7+pjpnpnn/Xr1K5me6qrqq+pTz/NUjUuSJAkEQRAEQRBhJs7uChAEQRAEEZuQCCEIgiAIwhZIhBAEQRAEYQskQgiCIAiCsAUSIQRBEARB2AKJEIIgCIIgbIFECEEQBEEQtkAihCAIgiAIWyARQhAEQRCELZAIIRzF1KlT4XK58NNPP9ldlQBvvPEGXC4X9u/fb3dVoopVq1bB5XJh1apVuo/1Pyd2MGPGDHTo0AHx8fHo1auXLXUgiGiBRAhBOJDjx49jypQpGDBgAM477zy4XC688cYbdlfLELNnz47Yuiv5/PPP8eCDD+LSSy9FSUkJnnzyybCVffToUdx+++1ITU1FkyZNcNVVV+Hrr78OW/kEEQoa2F0BgiDq89NPP+Gxxx5D27Zt0bNnT0PWAqcwe/ZstGjRAqNGjQra37dvX5w8eRIJCQn2VMwAK1asQFxcHObOnRvWevt8PgwaNAhbt27FAw88gBYtWmD27Nm48sorUVZWhs6dO4etLgRhJSRCCMKBtGrVCocPH0Z6ejo2bdqE3//+93ZXyXLi4uKQmJhoax1qamrQpEkT4fRVVVVo1KhR2IXTwoULsXbtWixYsAA33ngjAGDYsGHo0qULpkyZgnfffTes9SEIqyB3DOFIfvrpJwwbNgwejwfNmzfHvffei1OnTgWlKSkpQb9+/dCyZUu43W5kZ2djzpw59fJq164drr32Wnz55Ze46KKLkJiYiA4dOuDNN9+sl3bbtm3o168fGjVqhDZt2uCJJ56Az+cL2XnycLvdSE9PtzzfF198Ed26dUPjxo2RkpKCCy+8MKgD88da7Nixw5Lr365dO2zbtg2rV6+Gy+WCy+XClVdeCYAdE/LFF1/gpptuQtu2beF2u5GRkYHx48fj5MmTps991KhRSEpKwt69e3HNNdegadOmGD58OIBzloaZM2eiW7duSExMRFpaGu644w788ssvgeNdLhdKSkpQU1MTOJdwuZkWLlyItLQ03HDDDYF9qampGDZsGP7973+jtrY2LPUgCKshSwjhSIYNG4Z27dqhuLgY69atwwsvvIBffvklSDjMmTMH3bp1w3XXXYcGDRrg448/xl//+lf4fD6MGzcuKL89e/bgxhtvxJgxYzBy5Ei8/vrrGDVqFHJzc9GtWzcAQGVlJa666iqcPXsWkyZNQpMmTfDqq6+iUaNGQnWura3FsWPHhNK2aNFC8EpYx2uvvYZ77rkHN954Y0BUfPPNN1i/fj1uueWWoLRWXf+ZM2fi7rvvRlJSEh566CEAQFpaGreOCxYswIkTJzB27Fg0b94cGzZswIsvvogff/wRCxYsMH0Nzp49i8LCQlx22WV45pln0LhxYwDAHXfcgTfeeAOjR4/GPffcg3379uGll17C5s2b8dVXX6Fhw4Z466238Oqrr2LDhg34v//7PwDAJZdcwi3rxIkTOHHihGad4uPjkZKSoppm8+bN6N27N+LigseNF110EV599VXs2rULPXr00CyLIByHRBAOYsqUKRIA6brrrgva/9e//lUCIG3dujWw78SJE/WOLywslDp06BC0LzMzUwIgrVmzJrCvqqpKcrvd0v333x/Yd99990kApPXr1welS05OlgBI+/btU617SUmJBEBo08PGjRslAFJJSYmu45QMGTJE6tatm2qaUFz/bt26SVdccUW9tCtXrpQASCtXrlTNs7i4WHK5XNIPP/xQr556GDlypARAmjRpUtD+L774QgIgvfPOO0H7P/vss3r7R44cKTVp0kSoPH8dtbbMzEzNvJo0aSL9v//3/+rt/89//iMBkD777DOhOhGE0yBLCOFIlJaMu+++G7Nnz8ann36KnJwcAAiyUFRXV+PMmTO44oorsGTJElRXVyM5OTnwfXZ2Ni6//PLA59TUVGRlZeH7778P7Pv0009x8cUX46KLLgpKN3z4cMyePVuzzoWFhVi6dKn+kw0TzZo1w48//oiNGzdqxphYff1FkedZU1ODkydP4pJLLoEkSdi8eTPatm2rO08lY8eODfq8YMECJCcn4+qrrw6aGp6bm4ukpCSsXLmynqVIhBEjRuCyyy7TTCdiaTt58iTcbne9/f6YGivcVQRhByRCCEeijPbv2LEj4uLigtbq+OqrrzBlyhSUlpbWM3srO0FW55WSkhLk8//hhx/Qp0+feumysrKE6tyqVSu0atVKKK0dTJw4EcuWLcNFF12ETp06oaCgALfccgsuvfTSemmtvv6iHDhwAJMnT8ZHH30UdG/8eZqlQYMGaNOmTdC+3bt3o7q6Gi1btmQeU1VVZaisDh06oEOHDoaOVdKoUSNm3Ic/TkfUZUgQToNECBERKBem2rt3L/r374+uXbvi2WefRUZGBhISEvDpp5/iueeeqxdMGh8fz8xXkiTL6njy5EnhjjIUQadanH/++di5cyc++eQTfPbZZ/jggw8we/ZsTJ48GY8++qjqsWavvwh1dXW4+uqr8fPPP2PixIno2rUrmjRpgoMHD2LUqFGWBAi73e56cRU+nw8tW7bEO++8wzwmNTXVUFnHjx/H8ePHNdPFx8drluGfLaXEv69169aG6kgQdkMihHAku3fvRvv27QOf9+zZA5/Ph3bt2gEAPv74Y9TW1uKjjz4KsnKsXLnScJmZmZnYvXt3vf07d+4UOv7999/H6NGjhdJaKX700KRJE9x88824+eabcfr0adxwww2YNm0aioqKgqbLWnn9RVc2LS8vx65duzBv3jyMGDEisD/ULq6OHTti2bJluPTSSy21KDzzzDOa4g4499xprcbbq1cvfPHFF/D5fEEiav369WjcuDG6dOlitroEYQskQghHMmvWLBQUFAQ+v/jiiwCAgQMHAvjNsiHvzKurq1FSUmK4zGuuuQYzZ87Ehg0bAnEh//3vf7kjZCVOjwn53//+h+bNmwc+JyQkIDs7G4sXL8aZM2eCRIiV179JkyY4evSoZv1YeUqShOeff17k9AwzbNgwzJ49G48//ni9FVDPnj2L48ePo1mzZrrztTIm5MYbb8TChQvx4YcfBtYJ+emnn7BgwQIMHjyYGS9CEJEAiRDCkezbtw/XXXcdBgwYgNLSUrz99tu45ZZb0LNnTwBAQUEBEhISMHjwYNxxxx04fvw4XnvtNbRs2ZJpthbhwQcfxFtvvYUBAwbg3nvvDUzRzczMxDfffKN5vNUxIS+99BKOHj2KQ4cOAThnffjxxx8BnAsU9cdc+KeWlpSU1FuVVE5BQQHS09Nx6aWXIi0tDd999x1eeuklDBo0CE2bNg1Ka+X1z83NxZw5c/DEE0+gU6dOaNmyJfr161evfl27dkXHjh3xt7/9DQcPHoTH48EHH3xQLzbEaq644grccccdKC4uxpYtW1BQUICGDRti9+7dWLBgAZ5//vlAx68HK2NCbrzxRlx88cUYPXo0tm/fHlgxta6uTsjaQhCOxcaZOQRRD/+0xu3bt0s33nij1LRpUyklJUW66667pJMnTwal/eijj6ScnBwpMTFRateunfTUU09Jr7/+er3ptJmZmdKgQYPqlXXFFVfUmzr6zTffSFdccYWUmJgo/e53v5Mef/xxae7cuUJTdK3GP7WYtcnr8uKLLwpN03zllVekvn37Ss2bN5fcbrfUsWNH6YEHHpCqq6sDaUJx/SsrK6VBgwZJTZs2lQAErjlriu727dul/Px8KSkpSWrRooV02223SVu3bq03RdnoFF216bWvvvqqlJubKzVq1Ehq2rSp1KNHD+nBBx+UDh06JJxHKPn555+lMWPGSM2bN5caN24sXXHFFdLGjRttqQtBWIVLkmxyThMEYQnDhg3D/v37sWHDBtN5TZ06FY8++ij++9//2rKgGkEQsQW5YwgigpEkCatWrcLbb79td1UIgiB0QyKEICIYl8tleB2LaKG6ulpzsS47pkQTBKENiRCCICKae++9F/PmzVNNQ15ngnAmFBNCEEREs3379sAMIh75+flhqg1BRCfTp09HUVER7r33XsycORM///wzpkyZgs8//xwHDhxAamoqrr/+ejz++OO6VksmSwhBEBFNdnY2srOz7a4GQUQtGzduxCuvvBL43SgAOHToEA4dOoRnnnkG2dnZ+OGHH3DnnXfi0KFDWLhwoXDeZAkhCIIgCILJ8ePH0bt3b8yePRtPPPEEevXqhZkzZzLTLliwAH/+859RU1ODBg3EbBxkCVHg8/lw6NAhNG3aVHi5aYIgCCL2kCQJx44dQ+vWrev9JpGVnDp1CqdPn7YkL0mS6vVtbrebu+ruuHHjMGjQIOTn5+OJJ55Qzbu6uhoej0dYgAAkQupx6NAhZGRk2F0NgiAIIkKoqKio9+vMVnHq1Cm0z0xCZVWdJfklJSXV+2HFKVOmYOrUqfXSzp8/H19//TU2btyome9PP/2Exx9/HLfffruu+pAIUeBfvvqHr9vBkxQ6ZUsQBEFENt7jPmT23l/vZw+s5PTp06isqsMPZe3gaWquT/Ie8yEzdz8qKirg8XgC+1lWkIqKCtx7771YunRp0O9KMfP1ejFo0CBkZ2czxYwaJEIU+M1UnqQ4eJqyf/6dIAiCIPyEw3Wf1NSFpKbmyvHh1/7N4wkSISzKyspQVVWF3r17B/bV1dVhzZo1eOmll1BbW4v4+HgcO3YMAwYMQNOmTbFo0SI0bNhQV51IhBAEQRCEw6mTfKgzOY2kTvIJp+3fvz/Ky8uD9o0ePRpdu3bFxIkTER8fD6/Xi8LCQrjdbnz00UeaFhMWJEIIgiAIwuH4IMEHcypEz/FNmzZF9+7dg/Y1adIEzZs3R/fu3eH1elFQUIATJ07g7bffhtfrhdfrBQCkpqYiPl7Mk0AihCAIgiAIXXz99ddYv349AKBTp05B3+3btw/t2rUTyodECEEQBEE4HB98EHem8PMww6pVqwL/X3nllZb8HAKJEIIgCIJwOHWShDqTnb7Z40MBzUElCIIgCMIWyBJCEARBEA4n3IGp4YJECEEQBEE4HB8k1EWhCCF3DEEQBEEQtkCWEIIgCIJwOOSOIQiCIAjCFmh2DEEQBEEQhIWQJYQgCIIgHI7v181sHk4jYiwhdXV1eOSRR9C+fXs0atQIHTt2xOOPPx60YpskSZg8eTJatWqFRo0aIT8/H7t377ax1gRBEARhnrpfZ8eY3ZxGxIiQp556CnPmzMFLL72E7777Dk899RSefvppvPjii4E0Tz/9NF544QW8/PLLWL9+PZo0aYLCwkKcOnXKxpoTBEEQhDnqJGs2pxEx7pi1a9diyJAhGDRoEACgXbt2eO+997BhwwYA56wgM2fOxMMPP4whQ4YAAN58802kpaXhX//6F/74xz/aVneCIAiCIOoTMZaQSy65BMuXL8euXbsAAFu3bsWXX36JgQMHAjj3q32VlZXIz88PHJOcnIw+ffqgtLTUljoTBEEQhBX4LNqcRsRYQiZNmgSv14uuXbsiPj4edXV1mDZtGoYPHw4AqKysBACkpaUFHZeWlhb4jkVtbS1qa2sDn71ebwhqTxAEQRDG8cGFOrhM5+E0IkaE/POf/8Q777yDd999F926dcOWLVtw3333oXXr1hg5cqThfIuLi/Hoo49aWFNClMLWPbHk0FYUtu4Z8rKWHNoqVJ9oQORcw4EV19Mp5xIK/NfH6DnqeX+i+ToSkY1Lkhy4egmDjIwMTJo0CePGjQvse+KJJ/D2229jx44d+P7779GxY0ds3rwZvXr1CqS54oor0KtXLzz//PPMfFmWkIyMDPyyqwM8TeNDdj7RjrJhtFME8MqOFtHBwt852dn56Lm+1Emah3e9WUKFrrc1eI/VIaXL96iurobH4wlNGV4vkpOTsWlbGpKamougOH7Mhwu7HQlpffUSMZaQEydOIC4u+AbEx8fD5zvn5Wrfvj3S09OxfPnygAjxer1Yv349xo4dy83X7XbD7XaHrN7RjLxhUzZq/s/+NMq0aseGkmgWHkDwdbe7o9EzSufV1wnnESnoEdtmrTBE+KmzwB1j9vhQEDEiZPDgwZg2bRratm2Lbt26YfPmzXj22Wfx//7f/wMAuFwu3HfffXjiiSfQuXNntG/fHo888ghat26N66+/3t7KE/WQd1DKBpE1ajMqHnh5RitO61y0rr/ac6D8n+CjJuKUyNM57XkhYo+IccccO3YMjzzyCBYtWoSqqiq0bt0af/rTnzB58mQkJCQAODdNd8qUKXj11Vdx9OhRXHbZZZg9eza6dOkiXI7f9EXumGDkjZxWw6ZMz/os38/KR6s8NbQa1FgQJE7sVNRcAuQuMIaopYj1PtE1Nk843TFrt7WyxB1zSbfDjnLHRIwICRckQs6hJjREGj49DR0rP/nxVsYWxIIA8eO0TsYuF1y0ofVu8QYAIoMHQh/hFCFfftvaEhFyWfdDJEKcDIkQddO5Wno1a0g4O/9YFiJOignh4eS6mcFua44eS5MyXSQKFCc8RyRCzBMxMSFE6NHy22s1smoWDV6+yuOMNIbykZ5IoxTNcSJOaJi1cHr9tHDilFi14FMjx/r32xE0LiqkRdqfaCJaA1PJEqKALCG/oaex1XLfiKAVmKrlmglVAxSJYiWaG2O7sOPZ4+Eky6IZrI73CjfhtISs+DbDEktIv+4VZAkhIgMRESEy60HULKwVvGqXGAjXgmpWEu2jwnCi1z1pRXmxsraNnoFKpLqNrEKSXPBJ5iwZksnjQwGJEEITLRHBawRY+5Wm1khpVCOproR1hFuAsPK2U3yHsyyRYHaa4RN9kAghNBu5UKzb4M9HTag4jUgSIk69hpFOLF3XcFjT5GXoERixdB/8RGtMCIkQQrNz1TvqUJsto6dsngVGLXYk1qFrYA1OMfuHO/bDTJCqEesEbxAiD4SnZ/ocdVIc6iRzMSF1DowAJRFC6I6iF/VX641uZ32nZ/XUWF2HQs/MIMIYRq+tUQEfTniz35T1EX2/rBgcyN9zerajGxIhhG6UjZGWJcOqKYAi7pBIcplYRaydb6ixysLG6sB5gtHOjtbI86PnGCPnRs90fXxwwQdzlhAfnGcKIRES4xhZxIh3vFb0Om+kpdYwi9ZVmSZUVpFYFDmxTCiEgdqU81h/vkSsnHJiyUISrTEh5mQVEfGozWzR2xhqiYYlh7bWK09pdhWpm15iuVEn9GHVs6IW/8QTIDyXSLRhdL0Vten7ROiZPn164Idi/bz66qu48sor4fF44HK5cPToUd35kgjh8IcuPUKav5NeHpYwYO0PRbnhug5WNvCxNPqKdax0VegR2dH6jMkHHLxN61jR/dGGPzDV7GaEjRs34pVXXkFOTk7Q/hMnTmDAgAH4+9//bvi8yB3DYdGucgDWrpgqYimwi3CU7R8BagW1hWOFRrNliC7AFkqi1XSvvEfhjJdguQ71lC/q3tTj5owGQn0+ehc7s+p5OjdY/d6SvLQ4FxNizp1i5Pjjx49j+PDheO211/DEE08Efee3iqxatcpwnUiEhBi9AVwsrG6A9byIvAA6vTNqlMdrHSO3xoSiATPbGDmhk4jGWQO82RjhnvmkZvrXsmA44dkg6hOK92XRrnKkdLE0y7Dg9XqDPrvdbrjdbmbacePGYdCgQcjPz68nQqyAREgICbV/2Yp6aEXts443c16sBYlEZrxola0W7KdGpHfkVo/s7EB0tpX/e/8x4T5nWr8ishG5X6Ltkh333oc41Fk0OyYjIyNo/5QpUzB16tR66efPn4+vv/4aGzduNFWuGiRCIhQ1V44RK4XarBKtqbaisIQO76XXa61RCpBQj0hZpl07RsCR2hGqBWey4LlJ5N8ZrYeePOT14L2DZA1xJqL3RI9YOSudQbjcMdYsVnZOhFRUVAT9gB3LClJRUYF7770XS5cuRWJioqly1SARYiF2NjyhdFnIEV0XRK2DYR2vFXSm1TAoBU447oXdcSGRKkD86LGA+dOznjGrXTW8Z07rWZR/rzZdnQSKs3GqddSHOMvWCfF4PJq/oltWVoaqqir07t07sK+urg5r1qzBSy+9hNraWsTHm4+bJBHC4Q9demD54e12V8MytBpOUdReUJFgPissOLzjed+LBAFGQmyIExtGq1ETkXrN6bzv5N+rPX9GZ2OoPftqU9RjDSevk+KEOthN//79UV5eHrRv9OjR6Nq1KyZOnGiJAAFIhKhixlQbKkRjKOQjRZGpgEYCaLXqwnJXKMuzInDXj5l1BIyY9sNtbYkWRASGUhxoTSMXCYDW4/4xi9HAbR5O6Jy1rKB66mfVoCiWqJNcqJNMLlam4/imTZuie/fuQfuaNGmC5s2bB/ZXVlaisrISe/bsAQCUl5ejadOmaNu2Lc477zyhckiECKB3pGylmZ5VLquBVpqnWSM9HkbraCb2xCpERZZo2UasIqEQn7EiPkQQFdNKN6Ba/JEdRPo9ZVmS9A4meGLSKnETzdRZEJhaZ/Gy7S+//DIeffTRwOe+ffsCAEpKSjBq1CihPFySJFlbqwjH6/UiOTkZV2IIGrgactMZNQ2zAihFjlP7XmmZEG3snBBYaQWhElpa+SobZRIh6vBccSyxoCYeec+5VqySPA0vsJglZlhl68XMO6Y16IgkeG1WpHJWOoNV+Deqq6s1YyyM4u+T3tjcE42bmnOBnDhWh1EXbA1pffVClhCDiMQ8KEdl/n2s75Xf6SlXmSevLkpY9XMyrAZMhFCdW6iun14BoiU8nRBox7o+vHqxOmyRe8/qnJX/q707yn08YaRHUJixiorWLVIw4i6NdJFiJT4pDj6Ts2N8DrQ50LLtFuF3g/hRNhbKBpD1vfw7XiMjOvqT5yMaR8LKn7fPDpSuJqtwyvkBxutiNIjSTtREHE9saF0f1vvGe5/0uAa0XEFqVktl26Anb16evHqGC7Vz5qUH2FOb1XDy8xtu/O4Ys5vTIEuIQbREAs8VwzpWaxSrlU5potVzLEvU6HXrhAt/vfSM/I0G/oXj3K0qg+XWEO3UwwHLOqg1oreqnlY9z6xrK38e5Z+N5C2H906qHRNqRNs7HiQmCB4UE6LA73/7ZVcHeH71v2k1EnL0xnroSa/lAtLbCGqJGl45diEqFMz67I2OTI2UZxY9gssuUanmVpHvUzte1FWpLEPkGWE9V8rrquUO4gkFpTuIVVe9lhflseF8V3ll6RX90UI4Y0Je+ToXjZLM2Q1OHj+LO3qXOSomxHm2GQeix/Qoai5m7WOJHaWbRu0lNzva1TreTssI69z1mnbVCJWrR608K2C5+LTS2YHSHC93FSphuTBY95r3vqh18Kz7zLMgyssUcamo1ZFVF5ZFVKStUbqalITqORZtF+x+1sLJuR86DQ/+xcrMbk7DeTVyMKJiRPQlVDYWRvOWN15KP7hWQ6c2ItU7QrMLXj31iEczGCkjVPViPU923jNex6vXYsd7lnnplWJDy20iKuD1XEtWfVn1UtbBLMr7boU41ZPOia5cwrlQTIgBjMQOsF5MEZMrCzVzM68cZTCbaAOllV+o4VmCWCNX1jHyz6x00WY+VnMBhLN8OSx3B+9Yq+C9I7z/le8HDz3iRX4vtJ5bEYuGkc5dz7Mg0paIlsnbF23vWzix5rdjnGd3oJgQBayYEB56XlKRtKIvqOhog2dm9uchgqhfPRToPT8RQhU3YUUsTjSiVwxZ4VJkCRBWvIgfLQugmouHJRL0vOtq7xavXqF2wYRTwEa6KAlnTMgLZRdbEhNyT+46R8WEkCXEBGZMs3JErB7K9FrCgGe+Zo34RM21rFFlqILSzAg2tevDs36YtYpEo1VFFFbHL98n8p4on0cjglmZliUe5PEoonlpWQ9F3Sus8xLp8FnPlTIfVl3NCJNwCeVYfm/0Eq2WEOfVSIWDBw/iz3/+M5o3b45GjRqhR48e2LRpU+B7SZIwefJktGrVCo0aNUJ+fj52795tY435iMYxKAPjtMzGWqM6vemUxyiD76xurPR0EMrrpOwAlJvyWD3uMdG6W5Em0lB2gEohoreT4bk8zNbPf89F3yXlc8Orp/xclSKI9S7zXEK88lniR/kMKwVWJAgQuzFzffxbOANTo5WIESG//PILLr30UjRs2BCLFy/G9u3b8Y9//AMpKSmBNE8//TReeOEFvPzyy1i/fj2aNGmCwsJCnDp1ysaas+FZOFjwRksiDSSrXFajrJWf/3vlMby8w41I2Vp1jvURmZnz543w1dwKclj3LhTPkvwZ5lk21AQqT4BruWx4AwzlIINVR5YoYwkkUcuKWSLpPeFde8Ca4OhwEq2LlTmvRhyeeuopZGRkoKSkBBdddBHat2+PgoICdOzYEcA5K8jMmTPx8MMPY8iQIcjJycGbb76JQ4cO4V//+pe9lefAakRE0rNGQKx81EzDyoZMtGxWer3nwSMcL7ja6NaK8iN5FGmm7lpWAC3UniGWUBbtQHhWRV65LJGhZs0x6l5Rdo4sa5IyL7VzVtbRCqHAu+bhEO2hfBf1PptOead9ksuSzWlETEzIRx99hMLCQtx0001YvXo1fve73+Gvf/0rbrvtNgDAvn37UFlZifz8/MAxycnJ6NOnD0pLS/HHP/7RrqoHYPmWtRoW1vE8H7GIGZY3ClU7TitPXj0jzcJgxoQtR02gRRu80b8ftWeY55ZQy0fLyqKGHmuLPG+WS4RXNut8lcfw8lB7D9XqqfxezS0mkg8vT+V3LIsPz1Kkl1C1IXrzc4oAiWYixhLy/fffY86cOejcuTOWLFmCsWPH4p577sG8efMAAJWVlQCAtLS0oOPS0tIC37Gora2F1+sN2owi8mCLWBx4YkPLJKhmzlU2QlojRPl3rPLURl1KK00sv8jRcO4iQplnUVB7nnllaVkU1N4DEYuFyLPLEgc8K5rRDk1PW6CVp1IcqL37ynNRiiMRSwHr3Va2O1ZhRIDoGYgpz5v1DDgBnwWuGCcuVhYxlhCfz4cLL7wQTz75JADgggsuwLfffouXX34ZI0eONJxvcXExHn30UUvqaOSh1TPq4aVRjmJYox6eEFE2+qJ14XUAdr3AThY7Tq2XKFr1V7MY+GGNkFn3jPVsytNquTtE97PeGWU5yg5JS8wrMfJM8qxDrLzlaeRCiXc/ePXWspLw6qQ2+OAdzzoHNbQsbVr1FU2nVyDagTW/oksixDCtWrVCdnZ20L7zzz8fH3zwAQAgPT0dAHDkyBG0atUqkObIkSPo1asXN9+ioiJMmDAh8Nnr9SIjI8Oyems1WGpmaVHkDZA/T7Xv5WlEXm61hl9ZppoZVaQBM4re41kijbU/lhG9FiLWB0DcFC5itVCz0ImKJl5dRNwXVmGkDC2h4YfVsfLEnIhVSVkmSwDpqbPWfdAjDESeDa16EfYQMSLk0ksvxc6dO4P27dq1C5mZmQCA9u3bIz09HcuXLw+IDq/Xi/Xr12Ps2LHcfN1uN9xud8jqHYoXh1cOy6ohf+HVTMla1hBWnrzGUHmssjy1Bs9sg6DHdMuzAlHDpA+1ayW/vmodJC8/1j0yYrlTwuoI1fIwYuXTa9EURfTaAfxBjh4ri0j5SoEp/6xlbfWnN+J2UasTC54FLBKogwt1cJnOw2k4zzbDYfz48Vi3bh2efPJJ7NmzB++++y5effVVjBs3DgDgcrlw33334YknnsBHH32E8vJyjBgxAq1bt8b1119vb+VVsPIlkDcwrJea1VAoRzQi9VQz6fJGrqz8WJ2AmYZIWScRzJYXrRgdoYvsEzme97+IaV/NMiPawSoFtlq+vO9Ez13vNVJa7fz7WNYIoyJHyzKiJQJFhb2a9TbURJIAAX5zx5jdnIbzasTh97//PRYtWoT33nsP3bt3x+OPP46ZM2di+PDhgTQPPvgg7r77btx+++34/e9/j+PHj+Ozzz5DYmKijTXnY9YNw0PL4uH/q2y8WA2HHtTMp0ZGV0YRNcfzGlsgdsWJcqSo5zqwLBhq6fS4ZbQ6RtF3SevZ4LkTrbJYiLgdRPNVPsdqz7MIom415XcscaJ0+fDuj6glympi9f12IhEjQgDg2muvRXl5OU6dOoXvvvsuMD3Xj8vlwmOPPYbKykqcOnUKy5YtQ5cuXWyqrRihfBnURnKs0aXRl1+ts+I16sp6mhVAeo5jjXKJc1jRAYheU61OWs1apmW+19PZq7l61CyFou4lq7DKfWDkmZe3IUrXlFJUsNy3am7fcF3HSH/X6/CbS8b45jwiSoQ4DSse6lC8dMpRLGuEqjVqFTFBq33PG0HyymFZTfSOxI3cDxHfeKxhplNgWdz0IPfVq1nnrLw3Is+ola4Oo1jVVohaI+WCQ8t6yHtXlc8B736Goh20wurkJMgdQ9TDyAMdro5N3lgoRYZyNMOql5Z5V2u0yGp09DQKyvqLIuqKIfhoWRlE0Hs863lkPQMiHaL/O6N14eVnt/VMj1tEKw+ey1aZjx43F8siosxbfg3DFQciLzuSBxb+H7AzuzkN59UoClGzSoQauXmU1aDIxYaRzl7LkiDaiCnrwsrLCksHrxHm+aYjudGyE7klQ69o4HX4ejpZXt5GcIpwVbMOqV1bZR7yv/I8/PvNumfVCNf7pHzPtaxdhH2QCAkxag1EqF8Eli+WNTqRp9PrftHy7ypdK6KNkJqbxyrzuNYIKdYEiBXXQClo5R2aGesIa6TNK18rT5F9InWyA5YlQSnYzLxjoXjm5YML1uCHBIEYElzwmdwkmqIbe9jdYCldMsq/rGN4sI5RCg15WuVxWiNc0VgENRcRy+yrZ4So3BdLDaSVo0XWtVOzAvIsGMpnQy1OxExdtWC5MK3AiDDTQrSOdj3bdlgYtQZAkTDgIHcMIYRTH2bWiJQ3WuW9sFqjT5ZbR6QjVzP/8lwzelCOqFnfs6wqTr2XVqI8d5752ujoWks0aI3GWULGjFgy2vGGSpDqzZMVayH/a7Ye4RImouUYPS/eM2KXVZrgQyLEYpz4MPM6GZ55Wy4m9Jqq5XlYYfpW1o31Wb5faWlhWV70lG31qNvp8ESaqLWAJxpY4lbv82Gny0zvuxDKesiRWzW1nnUtFyfPqmkFeu5dKK6z3W40K/BJLks2p0EixAKc0DipoRXkx6u/3tGfcjSl5jZh7VOL8VAz5SvzUaYVaaB5PmpWXk6/33rg3WN5x6TlovP/VbtHyngA+X6t2B6WGJXvC9f9CFcnJn8XtK6NfJ+Iy0gtb17+rDy08he9p+HA6EDEaZj9BV3/5jScV6MIIxIUNqsRV3YIykZdxBdvFF5novd4lrWG1dEZaZx5riW9dXU6aveVdQ3V0ij389KrCWDW92qdiNn3z6kdk9azxno+WelZrlGWa1bE2ijyHoneCzVxK3+vrXjXRMS01vFE6CARYpJI6JBY4oPV4crTGB1h6nW3GB15qfl4ecKB12Dz/vJG99HWKPFG13qEp9YI3f9X/rzxnkuRsq0ShHo6zVAgIuxErgMvb616K+8DSyCacUmKPkPhdM3oxSnWT3LHxCBOePBChdyXrJVO/lckX9H81EZb8sZLrQ5apl/RUb7yf55bh1ePSMTs8y3i0gPY4k5+b9WEsXK0zjP3RyJa10/ESqgU3PLrI792rGsmIqp574MaegYxPIuHGcsFqz5W52HH8+dDnCWbUaZPnx74oVg/p06dwrhx49C8eXMkJSVh6NChOHLkiK58XZIkSYZrFYV4vV4kJyfjl10d4Gkab3d1Qoa8kVITJEbcJVaibEyVdZbv88NzMamdr/I8WXnzLCTRjojI4wk25Wee+4WXp9p9iGS0xLGWm0UtXxHRwupUecepvUda+bPeSz3nYOZdC8fz4j1Wh5Qu36O6uhoejyc0ZfzaJ9315R/gTmpoKq/a42fw0mWLdNd348aNGDZsGDweD6666irMnDkTADB27Fj85z//wRtvvHGujnfdhbi4OHz11VfCeZMlJAZhjZLkf+X/azVooRhN89wprH1alhVlg8kSMfKRN88CE6sCRI7yOvBG8mqCRInaKFjtPhjFKRYU0XNmIeqeUVpB5M+5fL9aeTzRqIVW26DH8mPknkWTYPVTJ7ks2fRy/PhxDB8+HK+99hpSUlIC+6urqzF37lw8++yz6NevH3Jzc1FSUoK1a9di3bp1wvk30F0jIuJRdsy8kajyf94+Iy+8skHkfc+qH28fL2/eiI0lxETdSbGEWqcgeg+U94s1UmaJDqtx0v3Tev5YYk60Q9ayFooKCd5nNSsIC5boYqWx8hlw0r22AitiOvzHe73eoP1utxtut5t5zLhx4zBo0CDk5+fjiSeeCOwvKyvDmTNnkJ+fH9jXtWtXtG3bFqWlpbj44ouF6kSWkBhFtGNRNoRaoxtR6wivERKpH6tMtXx55csbPOVIlIdTRtJ2oLzOasJVOdpWWjPU3F+xhNoz74dlsRPJl2dlVBMXVmLkXlph7TJattORLPgFXenXFVMzMjKQnJwc2IqLi5llzp8/H19//TXz+8rKSiQkJKBZs2ZB+9PS0lBZWSl8XiRCYhhlJ6w028rT8Eayag2nGTMqzzWjrJ+yPNZxrO95aAmRaGzcRFG6sljiT8TiIc9L/lmvJS1a4Lm45N8b6ZzVhL6apZB3bdXS8yymWuI+FPcxmp6NUFFRUYHq6urAVlRUxExz77334p133kFiYmLI6kIiJIZhjWR5I1M97hAWohYGVmPL68jk6ZWNKsuUrbVPWZ6R84h2RN1VIgJDzSVjph6Reo9Y10lNWBuBN8BgpRPZB9S35rDaDN79CsV9jNaBQh1clmwA4PF4gjaWK6asrAxVVVXo3bs3GjRogAYNGmD16tV44YUX0KBBA6SlpeH06dM4evRo0HFHjhxBenq68HnR7BgFsTI7hgVPiMjR45eWH+PPT6SBYFk/eOJIPjJn/RVFb/poRhlHoPzrhxcXwHpGWPdRr7A1c4945SnrGI2IWPaMij+eG03vvdR6NpxKOGfHjF41DAlJCabyOn38NEqu/KdQfY8dO4YffvghaN/o0aPRtWtXTJw4ERkZGUhNTcV7772HoUOHAgB27tyJrl27UkwIYQyev571V62REDXXatWFl58/T/93LJeRqFjiuXd46WIBVmfAG+2q5cGyUCnL8MOKI+HVSy+8+2vFcxpKRKwRZi1H8nMWua9qrhc98N7PSBIg0U7Tpk3RvXv3oK1JkyZo3rw5unfvjuTkZIwZMwYTJkzAypUrUVZWhtGjRyMvL09YgAAkQggGvNGRqNlc1PWiVT7PtC//6/9fLqB4cS3y//U0vHrSRQss9xXrf9ZxvPgc+V9lfizhI9qxiT5Per8LFyJuDuU+ngVCK0+1MsyKMN5956XVErtOEoROwGxQqn+zkueeew7XXnsthg4dir59+yI9PR0ffvihrjzIHaMglt0xckTM5WruGzVLhJZZX81Uq1W21nEi3xFsRF1dIs8Jz2XDOyZU8J7ZcD0bRt2HZsozC08kat1TtTqZPXe73udwumNuXfknS9wxb131XkjrqxeyhBBM9JpveR2PkXJEgtWUI3W9+dCIyzh6G3vecxIugci7vzwhzLLmiORvxHKjdS2sQFmeWaueyPXkfWfkuopAA4rIhUQIUQ9eQ6EV2KdMI2IqFmm4RPJUy8OoH53EyW/wRCbrXqrFdihjeFjwOmY9sQhqljZWeby6Kr9jvRt6BC3rOob6OeOdvzLGS484EXn3lZYRNQuZVn566hGt2LViaqghEUIEUFoZtHzS8gZaqwFiYbRz4NWdV1/lfq3PovUj2EGsejpWVvwPT+CIWLtEBCfPPaTMlyeC1TprrXgWvRa7UCP6zqil98OK51EKHV4ZRq9BLL2jTowJsQKKCVFAMSG/oRXToTaqERUhoj54q0z0FAuiH5EYED/KZ0P5LGi5YMJ5f/Q8s2p148UjKfexjpGncdKzaaWFQXn/1cRKpBHOmJA/Lv+zJTEh8/u/TTEhhHPhmaTlIxreyFH+vz+NaHyHWauJKEZGzgTfrcW6z7z4D71CUyR+wOj9UhMbSuuMlpCQH6OsL++a8co2Wm+rMfu+KdsLP0bdLgTggyvw+zGGN5A7hogAtBp9uZtErZFlmWT1lmcFavkrOw9qENXh3Vvl/8r0ymPVOiPlvVC7J0buF8+Kp/zfn78Z0aDMU80lwTqOVZ9woSdGRInau0TvmDEknBMRZjaJRAgRCfBMpv7vlGnVPvN8/GrHKI8X2cfazzP1mu1UohURMcgTGlqiwv9ZxEJmpF56jhW14im/12ux44ko5fmzBL2aUOKdVygwWo58oCK3psr3+9MRYpi2gljwK7yhoIHdFSCcC6tR1PJl80ZurLgBZTlqYodXPzV/up6RGDWG+iwOItdaS5joce0ZRS0eRdkhipajx2Imko4lkrVcQuF6Xo1ef7X4GXrXCDlkCSECaAXnaY1iWQ2mmdE16zs10zZhDi3XGs8Fp/Y8yEe/rGOUVoZQxQzwniMtK4XIMaw0yn28a6tlAVHLIxzoLVN5X824k+w4XycTrbNjnFcjQaZPnw6Xy4X77rsvsO/UqVMYN24cmjdvjqSkJAwdOhRHjhyxr5IRhLJz5wUUanVCIiZ3ZWOuJnq04lOMjtKI3zBiGhd1ifnhiVvWc2d1h6tm+dLj7tO6Pjwrofx75bVWvltagi6cGBUgWvvM5BfLRKs7JiJFyMaNG/HKK68gJycnaP/48ePx8ccfY8GCBVi9ejUOHTqEG264waZaRi6sEbASeSPLC+YTsayw8lRDac430lBR41Yf3n3U6w7gWRy0zPAibjw1rHIZiMR8iLhv5GJDucnzYv21GzURKPLOOeU8iMgg4kTI8ePHMXz4cLz22mtISUkJ7K+ursbcuXPx7LPPol+/fsjNzUVJSQnWrl2LdevW2VjjyIAXW6E1itRqlPSa19VM0aIWFEIf8nvIitXx/2+ks2R18nrum5rYlT8XIs+EUjzofW79+7XiX0Ssh3osMOHECXUg2JidGePfnEbEiZBx48Zh0KBByM/PD9pfVlaGM2fOBO3v2rUr2rZti9LS0nBXM6IRMUcrG349sQJawoTnCpKXpQdqWNVRCjxlx65mEeHlp0QZIKplPVPWjRVnpGZdYFnylPEnymN4FgvlOWlZCkTeBatdF1YgYgWS/8+7VkRoIHeMA5g/fz6+/vprFBcX1/uusrISCQkJaNasWdD+tLQ0VFZWcvOsra2F1+sN2ojf4I2Mw1W2mg9dtPGjRlIcnpXA6nsv6s5h7WMJEjksF5CaKNByr2i5klj1VQodO98jUURjXlh/1SyYBKFGxIiQiooK3HvvvXjnnXeQmJhoWb7FxcVITk4ObBkZGZblHalojXB48SJ6Oi4jIyl/w25FACWhjVonozcwFeBP19Y6Tvk9yw0j3+/PV2nh4LlFtJ5ztbgmtTy04mmc9GxqCQbWe8oTg2ptgt46Eb9BlhCbKSsrQ1VVFXr37o0GDRqgQYMGWL16NV544QU0aNAAaWlpOH36NI4ePRp03JEjR5Cens7Nt6ioCNXV1YGtoqIixGfibLRGmWroSS/a6GkF8xHm4bkf1K610esvOtqW/68Ww8FzBaq5RHiWD6VQYQkXPa4pXhyIqLgJJ3rcbOFwJekdbMQC0SpCImaxsv79+6O8vDxo3+jRo9G1a1dMnDgRGRkZaNiwIZYvX46hQ4cCAHbu3IkDBw4gLy+Pm6/b7Ybb7Q5p3SMJLWHAa7hF81AeK1IfM40RNWTqGIn/0RtYLJqGNdI22kmrPZfK+BT593rqpsxbq/7hFtCiFgk95y2ahkQEIUrEWEKaNm2K7t27B21NmjRB8+bN0b17dyQnJ2PMmDGYMGECVq5cibKyMowePRp5eXm4+OKL7a5+RMAb4bB83H6MmF71umCM4pRRppPRckWIpleD575jpROJneC58XgiQCk4/B0k77O8fBHXiZqFRcuyGMqOWnmOaugRLCKuKbPnRQKmPtFqCYkYESLCc889h2uvvRZDhw5F3759kZ6ejg8//NDuakUsVlsgWA1iqIRCtI/EwiWwrCiH5U5TS6tm9pfXS61Tl8eMiFpYRAIp5Wl4eWhZFewSx6LCUi3GRfT+mTlHGjywkWB+mq5k90kwiGgRsmrVKsycOTPwOTExEbNmzcLPP/+MmpoafPjhh6rxIER9eAGIWg2DsmEXDWYMhVCIdgEChOa6sQI5jZRlpBPhuXtE3QFqnZ+aZcJfHs86oiaYWZYWXj3MdM5Wduha1wdgB4CzrqFabI3V9SbIEkLEECz3i9YoSN4ghVsAsEan1IiJo7y3otdO6WbRshLorYdIWjWLm/wZ1rKcaFkveHEPys+855+XVgQ975OI0OddE/n1ZAksEbHCysuMKCWiHxIhhCqinROr0bEyrkAOa3Qa7qC/aEZpEfHDEhtG8jVaJzWrBOs7kTryzkfLGsPqvFnWHC1rkohlQq3uSkTcJUb3s95vUUuVKDR44EOWECJm4I3oRK0houm06sCDZaWRH2dFYFysoqez9O8P9bVmCUw9FhPRdCIuR158CcslI0c0zoWXhmXpMyIAjFqq5GItFIJftO2IZUiEEDEDryFgmW/9f5WjPy0RwULZmPNgNaRqpnBCHJapnif4lMeEoh5WpFFaKXjWB61nh3UsK3+gvmBSvlMsC6PSfSSH1/FrXQORd5FXrto5mY33YFmgyJUam5AIIbiwGgpWQxSKxoNnehfpEKkRM4eyQ5Z3oqKdo1msyI8Xl2B0tK2MmfCj9Uyy0HJVmrH06LWW+PPREkD+/Iy6i3huL6WQo4EEm2i1hETMYmVE+FGOHnkBaEZMu6K+a2XDyHK98I4ljKNHWBpxk1iBWryC/H+r4xZ4FkB5uTxLh/I4o4KZVbaoK5InXNT2y91OrNgXtfx49aLBgj4kyQXJpIgwe3woIEsIoYqIuVeO0U5I2diJlM3yzxPG4bnalPC+c8L1F+lgjVguWIh2ompxImbKZw0SlOcm6mYSFWrKGBituin/Zx3nhOeGsA8SIYQmao2IkdGNqEVFy/TN2kcNmjFYHaRoWqNprETLlcBKb5XLh7VPGVOjFAki1gQz9VHGmajFlKiVz0uvZXERibuhd1UfZhcq829Og0QIoQs10SHawPCC0ZQNJW90p8zLqI+fOIe8w2LdAz/Kzkcr4NGfxmgMgShazwcvDS/WSBSlOBYRw6KWBKP1kKMUIsr9Wqgdo9dKqbdsoj7RGhNCIoRQxUhgGyDWQWmlVXMJhKIxi/UGkhW7IN9EO1plfv7/eddXLebILFrPDssNqAfRzlnt+pkRJaxrp4zHYJ2vnjrL68qqu2g9abBAsCARQghj1NWilV40mI43OreKWGwgWTEESjeCPJ2Wa4yFmphUptGTrwhqz4poRyoqqNViZELlRuSVwXJLsWKueAJTS3zorbdRkUf8hj8w1ewmypw5c5CTkwOPxwOPx4O8vDwsXrw48P3evXvxhz/8AampqfB4PBg2bBiOHDmi+7xIhBBCaLlazJrStUbJ8k3vKIzQRmn9UO7npdfKUxmTIBKYqGYh4FkN1Ebt8mPVPqudhxpm8tErvljWJZF7JH9/tPLk1ZUnUInwEG53TJs2bTB9+nSUlZVh06ZN6NevH4YMGYJt27ahpqYGBQUFcLlcWLFiBb766iucPn0agwcPhs/n03VeJEIISzFiVmeZk/1ojZ6pIbQGER+/mVGwyDEsd4XISF+rc9f63p+f0eeJJbZY8AQA61itc2VZMdQEH0tkitSZda68WBMitITbEjJ48GBcc8016Ny5M7p06YJp06YhKSkJ69atw1dffYX9+/fjjTfeQI8ePdCjRw/MmzcPmzZtwooVK3SdF4kQwjKMWijUGl+1BjhUcQSxiPLeWdG5qI2+teogYjFRK1OZnzIftRgFNbeGCHqPkT/PLOsGT0TxLDtq5fOuhbIsLVeciItNWS69q87B6/UGbbW1tarp6+rqMH/+fNTU1CAvLw+1tbVwuVxwu92BNImJiYiLi8OXX36pqy4kQghdaJm8tVAzPys7Bt7oTenXJszB61zU3BpGO2dRi4uai4EnHFhxQ6LxRvJjWN+JoHxu9VwjPZ20mkjTunasvNQ++4/jWXFEnwUSIOaRLHDF+C0hGRkZSE5ODmzFxcXMMsvLy5GUlAS3240777wTixYtQnZ2Ni6++GI0adIEEydOxIkTJ1BTU4O//e1vqKurw+HDh3WdF4kQQphQNCRKc7JomXp96YT16O1kAePPEC8WgTdK12tVEY0jEamn3nNlCSdevmrCnWc5VNZLVMArxYeyfiICj7AOCYAkmdx+zauiogLV1dWBraioiFlmVlYWtmzZgvXr12Ps2LEYOXIktm/fjtTUVCxYsAAff/wxkpKSkJycjKNHj6J3796Ii9MnK0iEEKqomW9ZfnXWft4++XdGGjO9JmGiPkZiGOTH6nG1mLlPPBeKXmuNXvFqxKqh9vyLWCN4eSo3/36liOe5K7UEPSu2RXndWSKQ3r/Iwz/jxb/J3SpyEhIS0KlTJ+Tm5qK4uBg9e/bE888/DwAoKCjA3r17UVVVhZ9++glvvfUWDh48iA4dOuiqC4kQQhUj5mi9MQBmoOA462AJTrXvtTogkZgL1me1/Hh1U+YjIoS1BJhey4E8T5ZFRK9bSMvVwTtHlpDw58d6R+WixZ/eiEWHCC1OWDHV5/PVix9p0aIFmjVrhhUrVqCqqgrXXXedrjxJhBC6URt9ajVYVgsGEiDahFMUauXLekb0lMsSBKHqLFkCVyQGghfoqfxO7Til9YFVB5G6qYkhpduKJT6UZZm5d4Q5wj07pqioCGvWrMH+/ftRXl6OoqIirFq1CsOHDwcAlJSUYN26ddi7dy/efvtt3HTTTRg/fjyysrJ0nRf9ii5hCGVD5f9fK30o60MNIptQdM5a6I3xETleOWJX5inqfuCVwbISiD7fLJR5G4kv0aoDy4rBO4ZlHVHWlRWfInq9ieiiqqoKI0aMwOHDh5GcnIycnBwsWbIEV199NQBg586dKCoqws8//4x27drhoYcewvjx43WX45IkSdJOFjt4vV4kJyfjl10d4Gkab3d1HIuyAdIz2ub5rI3WQ543q26EPZi5D2rHGhEFeuuifEb1lMnq/K1ET71Y37PeXaXYEMmP3jPAe6wOKV2+R3V1NTweT2jK+LVP6v7PBxDfmB27IUrdiVp8O2xGSOurF3LHEIZQG9mJBg5aVQ9lvrHeMIYTNTeD0U5YJNZEqz5qx4jWh2Up4blC1MrjxcboheWeUZ6XWtCoMoBVngfvfHjnSu9Z+DE9M+bXzWmQO4YwBc9szvrfTyhGUaxofiL0iFxnM24Mq/JUHqtX6IgGl/rhBYGaxYgFUstiwnO3sNKHyrpDxC5kCSEsQS1gLdyCgARI+HHKNRe1kugRE6z/1dKHqqNWzpphWWqUwaVqFg75cfLjRerhlPsdS4Q7MDVckAghLEPE9SJiyjZbLo3S7MPJ117NdSFyjJGO18rrwRMJWq5RXoCrqChTih/e90RoIRFCECYJ1+iJRmn2Ec5rb6Tzk1sQ9ASZisKbqWIFvCm48nLln1luJy2xIeI+VQtyJUJHuH9FN1xQTAhhGLWpfzRiIkKNkc4vFPEpVhyjlpfadFlA2+Ui/8sTJCKzf+j9JUIBiRDCctQaKxo1EeHA7hG60Q6bN/1W6ToRcbGw8mbVT24VoinvzsWK2S00O4aICZTmW9a0QavXCPGXSxCA/c8CSxBoiQSgvtVCy/Kh9r/yeK0YEKU1ROQdtfs6xxLnRIg5d4oTRQjFhBCm0WPCDeUUWpGZAIQ2Trxe4a6TFeUpRbhoICzPzaknvkMtNkVEDGnl768fQZiFRAgRMtTEhtkGjBVcyGtcabT2G1Z0PnZgR52seEblqE1j5x2jNuuF95n1TqitLaIMaNUqS2s/ERpodozNFBcX4/e//z2aNm2Kli1b4vrrr8fOnTuD0pw6dQrjxo1D8+bNkZSUhKFDh+LIkSM21Th2EVkrwWwDphzpyT/TCI0PdRzaWPX8aE0d57lH1MQLT9irWQFFhAUtQuZ8JIs2pxExImT16tUYN24c1q1bh6VLl+LMmTMoKChATU1NIM348ePx8ccfY8GCBVi9ejUOHTqEG264wcZas4n2F11taqKRxZ+MCJlov8axgNWWCL1YPctFzZUiYjVUm1astgYKL66E5a4hkUqEm4j9Abv//ve/aNmyJVavXo2+ffuiuroaqampePfdd3HjjTcCAHbs2IHzzz8fpaWluPjii4XyDdcP2MVCxLmWeNC6BqKLKVl9LBG9iLx3oXw3Rd1hrMBSPa5NVkyIMj1vkEDvizjh/AG7Dm/+HfGNE03lVXfiFL4f8ST9gJ0VVFdXAwDOO+88AEBZWRnOnDmD/Pz8QJquXbuibdu2KC0t5eZTW1sLr9cbtIWDWHjRRUZ2ZvKx+hgi+nCSRUxk+izPdaJnlgprVgxvSq5aPoTDiFJ/TESKEJ/Ph/vuuw+XXnopunfvDgCorKxEQkICmjVrFpQ2LS0NlZWV3LyKi4uRnJwc2DIyMkJZ9ZhCbRSn5maxCuVMA/kWS0TT+eo9F1bsg93Xg+WW4blMRESB2rohrDzV4kfsvjaEClYEpVJgqjWMGzcO3377LebPn286r6KiIlRXVwe2iooKC2ooRrS/8FaMtqwamfkFSSwG4NHoNhg7Y4lYVgqWWDbznCoDtXnxKLTODuEEIk6E3HXXXfjkk0+wcuVKtGnTJrA/PT0dp0+fxtGjR4PSHzlyBOnp6dz83G43PB5P0BYuouGlF20kjQSkWi0YWIsxxSqReu5G3hmzAdBWoqcMvYGifuEhOmtMa/aO03B6/UKNf8VUs5vTiBgRIkkS7rrrLixatAgrVqxA+/btg77Pzc1Fw4YNsXz58sC+nTt34sCBA8jLywt3dWMGUV81z+etdJGEojNgjS5ZDXy0TvFVXl8gOgQwC6P3Tm4pC/W1UQsIlQsHvYKF5ZJhlWd0xhmPcL0v0frMikLrhNjMuHHj8Pbbb+Pdd99F06ZNUVlZicrKSpw8eRIAkJycjDFjxmDChAlYuXIlysrKMHr0aOTl5QnPjCFCA0uIsESJ6JoGRspXmx5pdXlOJVRCz07RJuJS4MWBhLveSssErz48kSxahjw/1vXh1cPocx+t7wsRHiLmt2PmzJkDALjyyiuD9peUlGDUqFEAgOeeew5xcXEYOnQoamtrUVhYiNmzZ4e5poQayhEaS3jY1ajFWmOqHDkrOzA5rO+cFuRp5FjW82hV/nrqYOW15Fm7tCyBhMOxIrDUgZaQiBEhIsuZJCYmYtasWZg1a1YYakQYgeWjljfCvI6QGkzrkZv91TpB1r1xggCxClaMULieN9Y7YEV+rH089yO9W5FBtP6KbsS4Y4jogeWOYcVj8NKEi2jrZJXwgoVZnZXTBYhafXixPrxnzo6YECvLF3E3kjWEcAokQgjbUMaIsBpFOzu/aGmg9V4z0VkUVs2uMFo/ZVAzLz/efRSJR7IarXU6zCJ/p3jCkmV1MVJ2uGYUEb+iXHTM6OYwIsYdQ8QGrIaTZ2KOFpEQSqzoJHidurwzMzr7hueSUxM6IoGmIs8HS7yE45ni1d9qCwhvRppVsS9OtIhFM1bMbqHZMQShgdIaYqcAoQY2GPm90ZrJJHLt1EQAy03H+l5ZrhF4VrhQEE7hrHYPrHRx0ntCmIEsIYTj4I12w20+J0vLOZQBrP59LKww8cvzF3UbaJVlx8wXu2EJRlYQuJl3KdqvoeNwoDvFLGQJIRyHMg7EDy8GgAgtLBEQ6vsQqryd8OyEe1o6y2XGsoSYEY1GjyfEocXKCCLMKEfd4R51UaPKxkjHY/TeWX0PnDRytyqwl4dceLBmpKntN0Iory29i4jawFQSIQTBwUkdFqENz4Kmts8ulJakULgXlTE8/n3yMq0klELBSfeOsBYSIUREwFowixAjnIGXPMIxkrWyjFB3qOG4H8qZZlpuNSNTpZUzmchiEUpcFm3OgkQIETGYbbS1Fq2KRlgjYSeIknBg5r6Ga/ZVqO6F6BRgM+6YaH9+HEeY3TFz5sxBTk5O4Nfl8/LysHjx4sD3lZWVuPXWW5Geno4mTZqgd+/e+OCDD3SfFokQIqKwYkEstYWcopVon0nE62BFnxc7hWgoytaavWSF8Ik28R5t52OWNm3aYPr06SgrK8OmTZvQr18/DBkyBNu2bQMAjBgxAjt37sRHH32E8vJy3HDDDRg2bBg2b96sqxwSIUTUIx9xapmfo70h4o2QRS0kWmnsEiMsV52W+86oG8JK7Chb6YoxWgeWi8duMWoGx9c9zJaQwYMH45prrkHnzp3RpUsXTJs2DUlJSVi3bh0AYO3atbj77rtx0UUXoUOHDnj44YfRrFkzlJWV6TotEiFERGFmZUe5GPHDaoSjVYgoffhqnYaoIGGVofZ9KGDVU01g8tY8ibb7ruV+UUunt4xou3aOxP8rumY3AF6vN2irra1VLbqurg7z589HTU0N8vLyAACXXHIJ3n//ffz888/w+XyYP38+Tp06Ve+X7rUgEUJEFLw1DvTm4UeeV7SveWBmQSqeIOFN9wT0X8NQzA5RWjuU91g5jTWchDMwNZQ43oKgk2h895VkZGQgOTk5sBUXFzPTlZeXIykpCW63G3feeScWLVqE7OxsAMA///lPnDlzBs2bN4fb7cYdd9yBRYsWoVOnTrrqQiKEiCjUpmHyhATLAiJ3z/DKicbGSGvBKrVjWJ+V1hVRjFpgtEbx8uO13ANO6zztWBPFymvgtOtpFKeehyRZswFARUUFqqurA1tRURGzzKysLGzZsgXr16/H2LFjMXLkSGzfvh0A8Mgjj+Do0aNYtmwZNm3ahAkTJmDYsGEoLy/XdV4uSfJXiwDOmamSk5Pxy64O8DSNt7s6hCBqy1Hz/sqPBWInYFVEeCmvodpx8vRa6XjHyI/l3Rv592oCQ3RNDLvvt10WGDNEetyH1XiP1SGly/eorq6Gx+MJTRm/9kltXnwUcY0STeXlO3kKP949xXB98/Pz0bFjRzz44IPo1KkTvv32W3Tr1i3o+06dOuHll18WzpN+O4aIWHidnTIQVb6P14jK4wNEYiYiFdbaDv79LDGmZXnQiqdRExSsuilhla8mcozeMzvucyQGdjq9fkRo8fl8qK2txYkTJwAAcXHBzpT4+Hj4fD5deZI7hohY5GZ7NTeNH63RMy9INZrcMnIhxhIbPAGiNfuEtQ4Jq2wR94jWNdfKQzS+xwn3VSSg1izhPE8nXNOoxcLAVBGKioqwZs0a7N+/H+Xl5SgqKsKqVaswfPhwdO3aFZ06dcIdd9yBDRs2YO/evfjHP/6BpUuX4vrrr9d1WiRCiKiA51Lx75P/VR6nFXAZjbA6aZFztsJ9wQoONXo8a7+W2CFCCwmR0OCSrNlEqaqqwogRI5CVlYX+/ftj48aNWLJkCa6++mo0bNgQn376KVJTUzF48GDk5OTgzTffxLx583DNNdfoOi9yxxARj5Z5X/lXaTVRdqw8i0i0dGwisRBa8RRalhFeOWrBwqxjROqv3K/3PjnlvoaqHuGYhSNiiSRMonOdD24egsydO1f1+86dOxtaIVUJWUKIqMNsJxQLjaieDlstKFTN+qAWL6JVrkigq5oQceJo3I46saYmW5EfQVgFiRAiqhENrOTNAOF1htHYGPs7by1rBM+tJc9DLlTkcSJKsWI2GJUndJw4Mrcz+FXEwqSFHosYEQLCHBMSLkiEEDGBvPNTm6KqjB9RC1SN9MZWzfXESmskdkbkmovW1Uj+RvONVIwG9Irky3OfKT9H2zV1DJJFm8MgEUJENcoROsBeA0Oe1o8el0GkwrIYiAg2M+X4Mes2ERFFrPsezbDumxX3Us36RRBmIBFCRDVqHatWp8QSJWqdXKTCm5bL+sw7Xjn110jZelCbPszLM9Lvkx6smvGldh1jQdQ5iii1hNDsGCLqUE7X1ZoNomdGhdpU4EjGig7FSByGmVlHygBZveVTJ6qNmXeFsJgwz44JF2QJIaIO+cictV8OK76DN9JTSxNNgsQMeq6D2c6MZf0QifeJFUIxIybWriERekiEEFGHcnaGfL8S5awNI9NWid/Qc13MLlKmnM2jdNGo3ctY7EyNXu9YvFaOhGbHEERkwAvOs8pEb5W/PdoRWXRMD7x4FbMBxkR95OIu2qemRwrhXjE1XJAIIaIKlvCwuuFkjbKpca6PyPoeWm4UkTLkebDiQmJVlMivi95YDlZAN0GEgqgUIbNmzUK7du2QmJiIPn36YMOGDXZXiQgT8o7PrDlZZM0FEiJsWPdB+b38/1B0dE5euCwcGH3+eaJQRMiQ1SSEROnsGN0iZOTIkVizZk0o6mIJ77//PiZMmIApU6bg66+/Rs+ePVFYWIiqqiq7q0bYgBE/uHJtCdFpq7HUwemBd13MdFixat3Qg/zZ1WMRVD7zesRMrAo+wji6RUh1dTXy8/PRuXNnPPnkkzh48GAo6mWYZ599FrfddhtGjx6N7OxsvPzyy2jcuDFef/11u6tGhBhWFL/WDBflCqhGF+yKtim7ZhHpuNTWJ9FCfm94YoY6QWsQuY5abjfCPC5YEBNi90kw0C1C/vWvf+HgwYMYO3Ys3n//fbRr1w4DBw7EwoULcebMmVDUUZjTp0+jrKwM+fn5gX1xcXHIz89HaWkp85ja2lp4vd6gjYhMeOuCKNPI/+eNFtVW2uS5GajTq4/VwamsvJXCMVSxQGaxuz5WXBO9go/eCUILQzEhqampmDBhArZu3Yr169ejU6dOuPXWW9G6dWuMHz8eu3fvtrqeQvz000+oq6tDWlpa0P60tDRUVlYyjykuLkZycnJgy8jICEdVCYvhTdcUWTmTJya0ZsHwGnW7OxsnoBR4VqC0XPG+9//vtGnU4e6Q1WJxRK+JUpQbdbc45R5ENDRFtz6HDx/G0qVLsXTpUsTHx+Oaa65BeXk5srOz8dxzz1lVx5BSVFSE6urqwFZRUWF3lYhfMTJrQjQoVW0UpxaApxZsqewEYxWWNUltvyhqwsZ/z2j69G9oucL05GHEuhTL70BIoMDUc5w5cwYffPABrr32WmRmZmLBggW47777cOjQIcybNw/Lli3DP//5Tzz22GOhqK8qLVq0QHx8PI4cORK0/8iRI0hPT2ce43a74fF4gjbCGYRq1oRavsrGViTORJlOnsbM9NNIRdlZscSZFW4Y+Wcnul+cgpnronx+RUQ9K63a/ab7FtvoFiGtWrXCbbfdhszMTGzYsAGbNm3CnXfeGdR5X3XVVWjWrJmV9RQiISEBubm5WL58eWCfz+fD8uXLkZeXF/b6EOFDbYTM+1/NvK8UHKxOjmcxCcf000hAS7SZmRGj150Qy5gRaKLPr5mp6k5zmzkWsoSc47nnnsOhQ4cwa9Ys9OrVi5mmWbNm2Ldvn9m6GWLChAl47bXXMG/ePHz33XcYO3YsampqMHr0aFvqQ4QHEf+3/LMyiFEtX5ZbQZkX75hYtISIrCcBmLOG6HUnxDoi1jsWWs+vlgWElY7npjMzCycWoBVTf+XWW29FYmJiKOpiCTfffDOeeeYZTJ48Gb169cKWLVvw2Wef1QtWJaITkXU9eKM2rRk1Imsn6HHZRCtanYkRYaAVTEwzlaxB9DrKn3+R51rtHVQOFtTyi+X3KlqJyhVT77rrLvzwww+ora3F+vXr0adPH7urRIQYntVDq5EU8VvrCTbV04BGe+OpFkugJRJYnaHo1OtYtD6pwQuiFhHVPMy4UHjvgcgUe15+MXG/yR1DEM5FbSYGL55DJD/l7ABWOh5qokbUZRENsK69GVcVTzjKO7FYubYiiMwY0ppJY+Q5F0WvIA1FHSICEiEE4VzkHY/ojBZlWl78B6ss1v9qKEVRrAXj8SwbarOUeHnwRvaxJOysQE9wr9q0aD15qZWhFP168oyV9ygaIREiCD3kzodlUlZOD1VLwxodanWUvM5VpJ7KekQbvGthJACRZ+HgCRJCGz2uF61raoU1hCdoRAYQ0fwe+aHA1BgnFh7ySIY3e0XZcYkKCq0ZM2rBrUqxwwvC0+siikbUXDJGOhmyhoQGrffBLMp7zRo46KlTVEIrphJEZMDq6NVcLCwLiGi8glLsyDdWXApLnESz+FCKAp54Y8FKqyVMYiZI0QLMXictV6eRvOSfWe+Sn5i8xxQTQhDOhRfpzzLfq1lG1L7TihVhpRWJBZEHVEYrahYoNfeZWnq1exCTnZROIuV5ExWgrGMI50MihIgaQtWoKq0ioi4eXt1iaQQvFwxm7o+e2Rwi3xPBOOXZUxOeeu5pNL5PFBNCEA5HxOWiNRVR639RRC0qyn3R1nCqIXJdlN+rxQcoXWCEGCyBaJf7w8rZNlEnRMkdQxDORj5aMtMAmQmEY5mMReJL9I70Ig2tWBDW7BdWsLB8H8+NE+3XMpRYFQQqGlOlpw6i3wNkCYskSIQQUYXeEZDoiE9U3MgDUEVH9tE+eufNXJIjOgLWmm5N6MfoNGo5Rqaqs/JQm2lmtG6hIuzvqxWuGB2WkDlz5iAnJyfw6/J5eXlYvHgxAGD//v1wuVzMbcGCBbpOi0QIETOINLZWjKJFYz6Uvu5oHcGLzI7hCQqeNUSeliwg1iE6FTcUHbDo++CUmTJLDm3FH7r0CF+BYXbHtGnTBtOnT0dZWRk2bdqEfv36YciQIdi2bRsyMjJw+PDhoO3RRx9FUlISBg4cqOu0SIQQUYVWQFo4GiwRkzZrGnC0WkJ4qN0rZUCriDUllq9lOOC5wlifrUCrLD2WsFBZGxftKrc0PycxePBgXHPNNejcuTO6dOmCadOmISkpCevWrUN8fDzS09ODtkWLFmHYsGFISkrSVQ6JECIq4blDREd6IvmL7teKh9BbdqSjJb7U4kLk+9SuGVlEQkO4rquaVcuIG86KWDHbsdAS4vV6g7ba2lrVouvq6jB//nzU1NQgLy+v3vdlZWXYsmULxowZo/u0SIQQxK+IdG7ytEr0BtQpO9uIbiB1oOdc1WYSGbkHROQTK++JEiun6GZkZCA5OTmwFRcXM8ssLy9HUlIS3G437rzzTixatAjZ2dn10s2dOxfnn38+LrnkEt3nRSKEiEqUMyn0HGdFuWYD+6IV3sJTvOvFGsHGkmAj1ImV98ZqKioqUF1dHdiKioqY6bKysrBlyxasX78eY8eOxciRI7F9+/agNCdPnsS7775ryAoCkAghohijawUYES/yskTcBPLRfFSuaSCInmumB+qcwoudwaGEfvwzXvyb2+1mpktISECnTp2Qm5uL4uJi9OzZE88//3xQmoULF+LEiRMYMWKEobqQCCGiDis6drMdH2/mh8iMkGhFbgVRc6XwXGIigbxR4fuPQPS410QFCwlJBWGeHcPC5/PVix+ZO3currvuOqSmphrKk0QIEbXY2YipTSWVp4mVhlZrWqWIu4UX4MsTHrFybSMJ5btA90iccC/bXlRUhDVr1mD//v0oLy9HUVERVq1aheHDhwfS7NmzB2vWrMFf/vIXw+dFIoSISngxIaFq9FiiQ1lmrI/OeeuFAGL3Rc26FevXNhLQ+y7Gkkh3IlVVVRgxYgSysrLQv39/bNy4EUuWLMHVV18dSPP666+jTZs2KCgoMFwOiRAiauGZ61mjMDPLTIsczxq5K/+PVkRcKyJ5KNepsCpAlTq68EHX2iRhdMXMnTsX+/fvR21tLaqqqrBs2bIgAQIATz75JA4cOIC4OONSgkSITuglihzk1hDWMt8sMSBPpzVyU3MpqE0tjcVAVN7Kp3rFiJqIZKXVIhbvhR1Qu2kBDogJCQUkQnRCDVbkoDcAjrVstBxeMKURl0+sN8pqglD+vfx//7VmCRGjpnt6n0ODntlOTlnAL9bfSbsgEUJELbzfoFAKB60ROcs6ohQurHJ5LhjW52hFLQCRJSDUXGRqy3WTRcM56Fm0T8ulFs64EKc/P+EOTA0XJEKImEDpCmG5B3jHKK0j8jz0lh9raF0jLUsST2iw9uudcWE2DogQw2ysldk8ogZyxxB2QS+gOdRG03rMxlr7WeWZSUPUv3cs14z/sxlRSPfDGkQFJa16S/ghEeJgqGG0BnmDpxWcqnfGBss1oBZXovw+FrDiXHn3hnf91TAaxErohzeLSW/bRveH3DGEDdDqj9ZidEaGHJZbh5WGZWnRmj0TrajNIjKah9F0WgGxhDF48Tv+7+R/Wfv1xJE4iT906RG+wsgdQ4QDtZfNqS9ipCNimud1Xsrpv6yRuTKPWLqPaq6wUJQlKiqM3otYund64a0QrHZPIjmguLB1TyzaVW53NSIeEiEOQytSnLAWZVCjno6S1cHyVmqVp4ul+xhOi4MeN4zR+sTSvdOLyLRpLUHCE4dOvO5hr1OUWkIa2F0Bggg3ysZRa+aM/xh5WuV+Oaw0yiDKWMTq82bFGYhO9xQZpRPisKbA8wQ3y1XDm91E9+c3rIjpoJgQg+zfvx9jxoxB+/bt0ahRI3Ts2BFTpkzB6dOng9J98803uPzyy5GYmIiMjAw8/fTTNtWYiDRE1pxQ83mTG00d3vRaK7Fi1hJhDKVbUm2fHN6aOsr4Lbp3iFpLSESIkB07dsDn8+GVV17Btm3b8Nxzz+Hll1/G3//+90Aar9eLgoICZGZmoqysDDNmzMDUqVPx6quv2lhzwsnoDRTVCrZjNaTEOZwQlEv3IzRoTXNXuiqVx7FEPysGi4RIdBIRImTAgAEoKSlBQUEBOnTogOuuuw5/+9vf8OGHHwbSvPPOOzh9+jRef/11dOvWDX/84x9xzz334Nlnn7Wx5kS0wuvQ5DEmaib/WOoQWTE3RGzAsoz4kbspWc+H0lUT80KELCHOorq6Guedd17gc2lpKfr27YuEhITAvsLCQuzcuRO//PILN5/a2lp4vd6gjYh+lHEaRo6Vf9aTbyx3xFat0eEEywphbGE+3owy+XdA/Z9TiMXZZXJonRAHsWfPHrz44ou44447AvsqKyuRlpYWlM7/ubKykptXcXExkpOTA1tGRkZoKk04DmXnp2X6VYsVUVu5U23KbyyhR4BoBTXSTBd70RunYeR5pzir2MBWETJp0iS4XC7VbceOHUHHHDx4EAMGDMBNN92E2267zXQdioqKUF1dHdgqKipM5xlu6IW0Bq3ryFuVkzfbRp6OJ3hiGTXzuloQsFErSCSvSeEU7AoSVYpSq+9jRLShUeqOsXWK7v33349Ro0appunQoUPg/0OHDuGqq67CJZdcUi/gND09HUeOHAna5/+cnp7Ozd/tdsPtduusubOghtU4WqMtnoVDLeJfnp4VfBeLnSFLcGg1/Dzzu9kOQ09sQSzeKxZ2d9JqU36tIBLucbRO0bVVhKSmpiI1NVUo7cGDB3HVVVchNzcXJSUliIsLNuLk5eXhoYcewpkzZ9CwYUMAwNKlS5GVlYWUlBTL605EL6wgOJ4lQ21RMt7nSGjwwgXruuhZU0XvtdTbmdK9sk6AWBFYygpWJSKbiIgJOXjwIK688kq0bdsWzzzzDP773/+isrIyKNbjlltuQUJCAsaMGYNt27bh/fffx/PPP48JEybYWHPC6bBGV0oLBm8kzlrzQCRmwe5RpV2wrrVyVoTadVdC60eEHide31CvN+NYotQdExEiZOnSpdizZw+WL1+ONm3aoFWrVoHNT3JyMj7//HPs27cPubm5uP/++zF58mTcfvvtNtaciCREGzWWaFGLFzFaTjQiElAayutDs2rsw6rrHbOzZEiE2MeoUaMgSRJzk5OTk4MvvvgCp06dwo8//oiJEyfaVGMiEhF1rfjTshZf4k03jLkGUwPWaFbuBqPF3ggR6L2KfOi3YwjiV1g+a7WOkBVsyjueOtRgRINSReIIKDYgNlDeZ/k6IrFw/12/bmbzcBoRYQkhiHCh5kpRuhJYgZS8JaoJMcxMwRXN3w/dn/Bj9pqzVl2NGcgdQxDRDcudYuZ4oj5aK8mGaxZRTHVeDsKK6dXKfGJlOfdoXTGV3DFEzMIy7/r3s9Ca2UFoI7oui1ZaM0u9x0KHZQXhvk5q9165hLs/Db17kQ9ZQoiYRW3UzWvclL9tIR+FUSenjUinYfXaIFYfHyuE26WoFsQtsgpx1L93UeqOIUsIEfPwLBqsRk6t4SPLiDaiQaYUjOoMnNqxKwV/zDwLDhQRZiFLCBHzqP02iZ5jKRhVG5GYDxIgsYHRd4cXIE5EJiRCiJhGPsVP9DdKeP5qQhy1a6YVvEpEBywrhpbA5K3ZEwtB4dEamEoihIhp9Iy+lL9XwfpxOvl+go0ZIUGLv4WXUM9QUopRLUHPuv8xsxZPlMaEkAghYhotawfP56z8PmbXLrAYo0vnE5GHcqExPQuPqf3eE2ENc+bMQU5ODjweDzweD/Ly8rB48eKgNKWlpejXrx+aNGkCj8eDvn374uTJk7rKIRFCxCy86X4sy4aa24bQh8hIl1wy0Q/vN5hYz4faVPpYWTU13O6YNm3aYPr06SgrK8OmTZvQr18/DBkyBNu2bQNwToAMGDAABQUF2LBhAzZu3Ii77rqr3i/ca0EihCB+RW2mi9r0WwqOMwfLyqQWL0Ii0H6sfN5FXGy8RQRjQXwECLM7ZvDgwbjmmmvQuXNndOnSBdOmTUNSUhLWrVsHABg/fjzuueceTJo0Cd26dUNWVhaGDRsGt9ut67RIhBAxhZlgSN7IjdAHa20VVhoWMdXpOAReMKhZROKr1Oohf//omQgtdXV1mD9/PmpqapCXl4eqqiqsX78eLVu2xCWXXIK0tDRcccUV+PLLL3XnTeuEEDGPPOBUbYaMyOJI1BgaQ3ntjYhFIjyEOghbZFaa8n2NhefCitkt/uO9Xm/QfrfbzbRglJeXIy8vD6dOnUJSUhIWLVqE7OzsgDVk6tSpeOaZZ9CrVy+8+eab6N+/P7799lt07txZuE4kQoiYhDc9UAu1uJFYaAjDCblenAlLmBu9T/L3MNQr5UY8Vsxu+fX4jIyMoN1TpkzB1KlT6yXPysrCli1bUF1djYULF2LkyJFYvXo1fD4fAOCOO+7A6NGjAQAXXHABli9fjtdffx3FxcXCVSIRQsQ8og0oT2iQADGOWrAvCZDIgOVWCVd5QAyJEwtFSEVFBTweT2A3L44jISEBnTp1AgDk5uZi48aNeP755zFp0iQAQHZ2dlD6888/HwcOHNBVJYoJIWIS3hoFrHS846mTNI4Rk37MdDYRhujvLqkdKzojRo7o4oJEffzTbv2baDCpz+dDbW0t2rVrh9atW2Pnzp1B3+/atQuZmZm66kIihIhZRPzJvIWU5KMx6hyJaEdEoCvfDfn7Id+Ux/DeI5arRm3J9mh/D8M9RbeoqAhr1qzB/v37UV5ejqKiIqxatQrDhw+Hy+XCAw88gBdeeAELFy7Enj178Mgjj2DHjh0YM2aMrvMiEULEFKyRlxl3DI2+jKM2uyjaO5RIxOgiYqw0cuGhJxYrVDN1IoIwT9GtqqrCiBEjkJWVhf79+2Pjxo1YsmQJrr76agDAfffdh6KiIowfPx49e/bE8uXLsXTpUnTs2FHXaVFMCBFz8ILheCZh3vohMdP4hQg9149Eif2IruMRilVvlRYT+XtIz0ZomDt3rmaaSZMmBeJDjEKWEIJQQWlaJqzFyPoshP0oLYpG3hG1Y3mfY1l8uCTJks1pkAghYgrWWgNajZnWCp6EMeTrs8j3KdMQ9qM2e8moRVAuLFhLryuDx+UzqWLSChlmd0y4IBFCxDQ0M8NeWAKErrXzUIvtMHO/RKa3K8VqLFpBohmKCSFiBjPrGdDiZKGFrqXzYVmurMhTbR+9Z79h5YqpToJECBFTKMWHmeA4gog1QvXcs2I+tIJdY06gWLhYmZMgdwwRM8RUg0UQEYpojBbNUIsOyBJCxBRGGy7eb8YQBGEden5DJtzvot3vPrljCCLCUYvwD+dvXxAEwYclMpwQkxWKmBhdkDuGICIfXgMi4n9WO54gCOtw4o/UOcUSEq5l28MFiRAiZlAz9YoEnJKVhCBCj+i03XDjBCEUjUScCKmtrUWvXr3gcrmwZcuWoO+++eYbXH755UhMTERGRgaefvppeypJRAx6fruEGiGCCD2R8p6FfVBCi5U5gwcffBCtW7eut9/r9aKgoACZmZkoKyvDjBkzMHXqVLz66qs21JJwGkp3ijIGRP6X5XqJlIaRIIjQYeQ3cqwk2lwxQIQFpi5evBiff/45PvjgAyxevDjou3feeQenT5/G66+/joSEBHTr1g1btmzBs88+i9tvv92mGhNOQSvwVBl0Rr8ZQxCEH3LFho6IsYQcOXIEt912G9566y00bty43velpaXo27cvEhISAvsKCwuxc+dO/PLLL9x8a2tr4fV6gzYi+tCaBWNmETOCIKIbRwxIJMmazWFEhAiRJAmjRo3CnXfeiQsvvJCZprKyEmlpaUH7/J8rKyu5eRcXFyM5OTmwZWRkWFdxIuKgEQ9BEDzsXCCNZseEgEmTJsHlcqluO3bswIsvvohjx46hqKjI8joUFRWhuro6sFVUVFheBmE/8sZD64e3SIgQBMHDdotIlGFrTMj999+PUaNGqabp0KEDVqxYgdLSUrjd7qDvLrzwQgwfPhzz5s1Deno6jhw5EvS9/3N6ejo3f7fbXS9fIvpQW6jMj+2LEREEQfCI0sXKbBUhqampSE1N1Uz3wgsv4Iknngh8PnToEAoLC/H++++jT58+AIC8vDw89NBDOHPmDBo2bAgAWLp0KbKyspCSkhKaEyAiAj2/nksChCCcjR0DBScMTly+c5vZPJxGRMSEtG3bFt27dw9sXbp0AQB07NgRbdq0AQDccsstSEhIwJgxY7Bt2za8//77eP755zFhwgQ7q044AD1LspMrhiCci11iwG4BEs1EhAgRITk5GZ9//jn27duH3Nxc3H///Zg8eTJNzyXqQQ0KQUQm4Q4MddSgJEoXK4uodUL8tGvXDhJjqlFOTg6++OILG2pERAqsRsy/zwkmV4Ig1AnXO+ooAQL6FV2CiEj8wkK5MipQ301DAoQgCMChbYIV63w4cJ0QEiFEVCOf8aK1QBlBEARZRMNL1MSEEAQLlgWEIAiChbydcFqbQYuVEUQEwlqUTPkjdgRBEHIXjNMECAAKTCWISERtkTJH+n0JgrAN5crKROghSwgR9VBjQhCEFk63kJI7hiCiAKc3NARB2IejrSD0K7oEEXko/busQFVH+n8Jggg7jhQfUQ6JEIIACRGCIJwNuWMIIgIRFRc0AiKI2CUiBiFhnh0zZ84c5OTkwOPxwOPxIC8vD4sXLw58f+WVV8LlcgVtd955p+7TotkxRNQSEQ0LQRC2Q4OQ+rRp0wbTp09H586dIUkS5s2bhyFDhmDz5s3o1q0bAOC2227DY489FjimcePGusshEULEPNQAEaGAVt4krCTcvx0zePDgoM/Tpk3DnDlzsG7duoAIady4MdLT003VidwxRNQi0gFQJ0GEErLGEZbhk6zZDFBXV4f58+ejpqYGeXl5gf3vvPMOWrRoge7du6OoqAgnTpzQnTdZQoiYwLGrIBJRCwlcwlKsWPH01+O9Xm/QbrfbDbfbXS95eXk58vLycOrUKSQlJWHRokXIzs4GANxyyy3IzMxE69at8c0332DixInYuXMnPvzwQ11VIhFCxAQsAUKdBEEQsUhGRkbQ5ylTpmDq1Kn10mVlZWHLli2orq7GwoULMXLkSKxevRrZ2dm4/fbbA+l69OiBVq1aoX///ti7dy86duwoXBcSIQRBEAThcFywICbk178VFRXweDyB/SwrCAAkJCSgU6dOAIDc3Fxs3LgRzz//PF555ZV6afv06QMA2LNnD4kQgvAjt3bIrSGiVhAjxxAEQViOFSue/nq8f9qtXnw+H2pra5nfbdmyBQDQqlUrXXmSCCGiGv8MBSO/kEkChCCIWKWoqAgDBw5E27ZtcezYMbz77rtYtWoVlixZgr179+Ldd9/FNddcg+bNm+Obb77B+PHj0bdvX+Tk5Ogqh0QIEdXIfyumsHXPesu1q4kLEh4EQTiFcE/RraqqwogRI3D48GEkJycjJycHS5YswdVXX42KigosW7YMM2fORE1NDTIyMjB06FA8/PDDuutEIoSIapRWD7kYIZFBEETEYOHsGBHmzp3L/S4jIwOrV682WZlz0DohRFSjFBpG3DIEQRBEaCBLCBH1KINT5QKELCIEQUQCLkmCy2RgqtnjQwFZQoiYgmUBcYJFxAl1IAjCwfgs2hwGiRAi5lhyaCvXTWMX5B4iCCIWIXcMEbM4zQ3jtPoQBOEcyB1DEFEIWR8IgogIJIs2h0GWECKmIesDQRARgYUrpjoJsoQQBEEQBGELZAkhCIIgCIcT7hVTwwWJEIIgCIJwOuSOsZ///Oc/6NOnDxo1aoSUlBRcf/31Qd8fOHAAgwYNQuPGjdGyZUs88MADOHv2rD2VJQiCIAhClYixhHzwwQe47bbb8OSTT6Jfv344e/Ysvv3228D3dXV1GDRoENLT07F27VocPnwYI0aMQMOGDfHkk0/aWHOCIAiCMIfLd24zm4fTiAgRcvbsWdx7772YMWMGxowZE9ifnZ0d+P/zzz/H9u3bsWzZMqSlpaFXr154/PHHMXHiREydOhUJCQl2VJ0gCIIgzEPuGPv4+uuvcfDgQcTFxeGCCy5Aq1atMHDgwCBLSGlpKXr06IG0tLTAvsLCQni9Xmzbto2bd21tLbxeb9BGEARBEEToiQgR8v333wMApk6diocffhiffPIJUlJScOWVV+Lnn38GAFRWVgYJEACBz5WVldy8i4uLkZycHNgyMjJCdBYEQRAEYZAoXazMVhEyadIkuFwu1W3Hjh3w+c45sh566CEMHToUubm5KCkpgcvlwoIFC0zVoaioCNXV1YGtoqLCilMjCIIgCMvwL9tudnMatsaE3H///Rg1apRqmg4dOuDw4cMAgmNA3G43OnTogAMHDgAA0tPTsWHDhqBjjxw5EviOh9vthtvtNlJ9giAIgiBMYKsISU1NRWpqqma63NxcuN1u7Ny5E5dddhkA4MyZM9i/fz8yMzMBAHl5eZg2bRqqqqrQsmVLAMDSpUvh8XiCxAtBEARBRBxRGpgaEbNjPB4P7rzzTkyZMgUZGRnIzMzEjBkzAAA33XQTAKCgoADZ2dm49dZb8fTTT6OyshIPP/wwxo0bR5YOgiAIIrKRAJidYus8DRIZIgQAZsyYgQYNGuDWW2/FyZMn0adPH6xYsQIpKSkAgPj4eHzyyScYO3Ys8vLy0KRJE4wcORKPPfaYzTUnCIIgCHNYEdNBMSEmaNiwIZ555hk888wz3DSZmZn49NNPw1grgiAIgiCMEjEihCAIgiBiFgkWxIRYUhNLIRFCEARBEE4nSgNTI2KxMoIgCIIgog+yhBAEQRCE0/EBcFmQh8MgEUIQBEEQDidaZ8eQO4YgCIIgCFsgSwhBEARBOJ0oDUwlEUIQBEEQTidKRQi5YwiCIAiCsAUSIQRBEAThdPyWELObIHPmzEFOTg48Hg88Hg/y8vKwePFiRrUkDBw4EC6XC//61790nxaJEIIgCIJwOj6LNkHatGmD6dOno6ysDJs2bUK/fv0wZMgQbNu2LSjdzJkz4XIZnztMMSEEQRAE4XDCPUV38ODBQZ+nTZuGOXPmYN26dejWrRsAYMuWLfjHP/6BTZs2oVWrVobqRCKEIAiCIAgudXV1WLBgAWpqapCXlwcAOHHiBG655RbMmjUL6enphvMmEUIQBEEQTsfC2TFerzdot9vthtvtrpe8vLwceXl5OHXqFJKSkrBo0SJkZ2cDAMaPH49LLrkEQ4YMMVUlEiEEQRAE4XR8EuAyKUJ8547PyMgI2j1lyhRMnTq1XvKsrCxs2bIF1dXVWLhwIUaOHInVq1djz549WLFiBTZv3myuPiARQhAEQRAxRUVFBTweT+AzywoCAAkJCejUqRMAIDc3Fxs3bsTzzz+PRo0aYe/evWjWrFlQ+qFDh+Lyyy/HqlWrhOtCIoQgCIIgnI6F7hj/tFu9+Hw+1NbW4tFHH8Vf/vKXoO969OiB5557rl5AqxYkQgiCIAjC8VggQiB+fFFREQYOHIi2bdvi2LFjePfdd7Fq1SosWbIE6enpzGDUtm3bon379rpqRCKEIAiCIIggqqqqMGLECBw+fBjJycnIycnBkiVLcPXVV1taDokQgiAIgnA6Yf7tmLlz5+rM2ljdSIQQBEEQhNPxSdDjTuHn4Sxo2XaCIAiCIGyBLCEEQRAE4XQk37nNbB4Og0QIQRAEQTidMMeEhAsSIQRBEAThdCgmhCAIgiAIwjrIEkIQBEEQTofcMQRBEARB2IIEC0SIJTWxFHLHEARBEARhC2QJIQiCIAinE6XumIixhOzatQtDhgxBixYt4PF4cNlll2HlypVBaQ4cOIBBgwahcePGaNmyJR544AGcPXvWphoTBEEQhEX4fNZsDiNiRMi1116Ls2fPYsWKFSgrK0PPnj1x7bXXorKyEgBQV1eHQYMG4fTp01i7di3mzZuHN954A5MnT7a55gRBEARBsIgIEfLTTz9h9+7dmDRpEnJyctC5c2dMnz4dJ06cwLfffgsA+Pzzz7F9+3a8/fbb6NWrFwYOHIjHH38cs2bNwunTp20+A4IgCIIwgd8dY3ZzGBEhQpo3b46srCy8+eabqKmpwdmzZ/HKK6+gZcuWyM3NBQCUlpaiR48eSEtLCxxXWFgIr9eLbdu2cfOura2F1+sN2giCIAjCUUSpCImIwFSXy4Vly5bh+uuvR9OmTREXF4eWLVvis88+Q0pKCgCgsrIySIAACHz2u2xYFBcX49FHHw1d5QmCIAiCYGKrJWTSpElwuVyq244dOyBJEsaNG4eWLVviiy++wIYNG3D99ddj8ODBOHz4sKk6FBUVobq6OrBVVFRYdHYEQRAEYRE+yZrNYdhqCbn//vsxatQo1TQdOnTAihUr8Mknn+CXX36Bx+MBAMyePRtLly7FvHnzMGnSJKSnp2PDhg1Bxx45cgQAkJ6ezs3f7XbD7XabOxGCIAiCCCGS5INk8ldwzR4fCmwVIampqUhNTdVMd+LECQBAXFyw4SYuLg6+X6cc5eXlYdq0aaiqqkLLli0BAEuXLoXH40F2drbFNScIgiCIMCJZYMlwYExIRASm5uXlISUlBSNHjsTWrVuxa9cuPPDAA9i3bx8GDRoEACgoKEB2djZuvfVWbN26FUuWLMHDDz+McePGkaWDIAiCIBxIRIiQFi1a4LPPPsPx48fRr18/XHjhhfjyyy/x73//Gz179gQAxMfH45NPPkF8fDzy8vLw5z//GSNGjMBjjz1mc+0JgiAIwiQ0O8ZeLrzwQixZskQ1TWZmJj799NMw1YggCIIgwoTPB7hMxnQ4MCYkIiwhBEEQBEFEHxFjCSEIgiCImEWSAERfYCqJEIIgCIJwOJLPB8mkO8aJU3TJHUMQBEEQhC2QJYQgCIIgnA65YwiCIAiCsAWfBLiiT4SQO4YgCIIgCFsgSwhBEARBOB1JAmB2nRDnWUJIhBAEQRCEw5F8EiST7hjJgSKE3DEEQRAE4XQknzWbIHPmzEFOTg48Hg88Hg/y8vKwePHiwPd33HEHOnbsiEaNGiE1NRVDhgzBjh07dJ8WiRCCIAiCIIJo06YNpk+fjrKyMmzatAn9+vXDkCFDsG3bNgBAbm4uSkpK8N1332HJkiWQJAkFBQWoq6vTVY5LcqJ9xka8Xi+Sk5Pxy64O8DSNt7s6BEEQhEPxHqtDSpfvUV1dDY/HE5oyfu2TrnT9AQ1cDU3ldVY6g1XSIsP1Pe+88zBjxgyMGTOm3nfffPMNevbsiT179qBjx47CeVJMCEEQBEE4HckH84Gpxo6vq6vDggULUFNTg7y8vHrf19TUoKSkBO3bt0dGRoauvEmEKPAbhrzHnbe8LUEQBOEc/P1EOBwKZ3HG9FplZ3EGwDnrihy32w23210vfXl5OfLy8nDq1CkkJSVh0aJFyM7ODnw/e/ZsPPjgg6ipqUFWVhaWLl2KhIQEfZWSiCAqKir8y9LRRhtttNFGm+ZWUVERsj7p5MmTUnp6umV1TUpKqrdvypQpzLJra2ul3bt3S5s2bZImTZoktWjRQtq2bVvg+6NHj0q7du2SVq9eLQ0ePFjq3bu3dPLkSV3nRzEhCnw+Hw4dOoSmTZvC5XLZUgev14uMjAxUVFSEzM9oF3RukQmdW2RC5xZaJEnCsWPH0Lp1a8TFhW6ex6lTp3D69GlL8pIkqV7fxrOEKMnPz0fHjh3xyiuv1Pvu9OnTSElJwf/93//hT3/6k3B9yB2jIC4uDm3atLG7GgAQmBoVjdC5RSZ0bpEJnVvoSE5ODnkZiYmJSExMDHk5Wvh8PtTW1jK/kyQJkiRxv+dBIoQgCIIgiCCKioowcOBAtG3bFseOHcO7776LVatWYcmSJfj+++/x/vvvo6CgAKmpqfjxxx8xffp0NGrUCNdcc42uckiEEARBEAQRRFVVFUaMGIHDhw8jOTkZOTk5WLJkCa6++mocOnQIX3zxBWbOnIlffvkFaWlp6Nu3L9auXYuWLVvqKodEiANxu92YMmWKkI8u0qBzi0zo3CITOjfCKHPnzuV+17p1a3z66aeWlEOBqQRBEARB2AIt204QBEEQhC2QCCEIgiAIwhZIhBAEQRAEYQskQgiCIAiCsAUSITYybdo0XHLJJWjcuDGaNWvGTONyuept8+fPD0qzatUq9O7dG263G506dcIbb7wR+sprIHJuBw4cwKBBg9C4cWO0bNkSDzzwAM6ePRuUxonnxqJdu3b17tP06dOD0nzzzTe4/PLLkZiYiIyMDDz99NM21VYfs2bNQrt27ZCYmIg+ffpgw4YNdldJN1OnTq13f7p27Rr4/tSpUxg3bhyaN2+OpKQkDB06FEeOHLGxxuqsWbMGgwcPRuvWreFyufCvf/0r6HtJkjB58mS0atUKjRo1Qn5+Pnbv3h2U5ueff8bw4cPh8XjQrFkzjBkzBsePHw/jWbDROrdRo0bVu5cDBgwISuPUcyPqQyLERk6fPo2bbroJY8eOVU1XUlKCw4cPB7brr78+8N2+ffswaNAgXHXVVdiyZQvuu+8+/OUvf8GSJUtCXHt1tM6trq4OgwYNwunTp7F27VrMmzcPb7zxBiZPnhxI49Rz4/HYY48F3ae777478J3X60VBQQEyMzNRVlaGGTNmYOrUqXj11VdtrLE277//PiZMmIApU6bg66+/Rs+ePVFYWIiqqiq7q6abbt26Bd2fL7/8MvDd+PHj8fHHH2PBggVYvXo1Dh06hBtuuMHG2qpTU1ODnj17YtasWczvn376abzwwgt4+eWXsX79ejRp0gSFhYU4depUIM3w4cOxbds2LF26FJ988gnWrFmD22+/PVynwEXr3ABgwIABQffyvffeC/reqedGMDDwezqExZSUlEjJycnM7wBIixYt4h774IMPSt26dQvad/PNN0uFhYUW1tA4vHP79NNPpbi4OKmysjKwb86cOZLH45Fqa2slSXL+ucnJzMyUnnvuOe73s2fPllJSUgLnJkmSNHHiRCkrKysMtTPORRddJI0bNy7wua6uTmrdurVUXFxsY630M2XKFKlnz57M744ePSo1bNhQWrBgQWDfd999JwGQSktLw1RD4yjbCJ/PJ6Wnp0szZswI7Dt69Kjkdrul9957T5IkSdq+fbsEQNq4cWMgzeLFiyWXyyUdPHgwbHXXgtX+jRw5UhoyZAj3mEg5N+IcZAmJAMaNG4cWLVrgoosuwuuvvx70s9GlpaXIz88PSl9YWIjS0tJwV1MXpaWl6NGjB9LS0gL7CgsL4fV6sW3btkCaSDq36dOno3nz5rjgggswY8aMINdSaWkp+vbtG/Qz14WFhdi5cyd++eUXO6qryenTp1FWVhZ0D+Li4pCfn+/Ye6DG7t270bp1a3To0AHDhw/HgQMHAABlZWU4c+ZM0Hl27doVbdu2jcjz3LdvHyorK4POJzk5GX369AmcT2lpKZo1a4YLL7wwkCY/Px9xcXFYv3592Ousl1WrVqFly5bIysrC2LFj8b///S/wXaSfW6xBK6Y6nMceewz9+vVD48aN8fnnn+Ovf/0rjh8/jnvuuQcAUFlZGdSRA0BaWhq8Xi9OnjyJRo0a2VFtTXj19n+nlsaJ53bPPfegd+/eOO+887B27VoUFRXh8OHDePbZZwGcO5f27dsHHSM/35SUlLDXWYuffvoJdXV1zHuwY8cOm2pljD59+uCNN95AVlYWDh8+jEcffRSXX345vv32W1RWViIhIaFe7FJaWlrgWYwk/HVm3Tf5u6VcXrtBgwY477zzHH/OAwYMwA033ID27dtj7969+Pvf/46BAweitLQU8fHxEX1usQiJEIuZNGkSnnrqKdU03333XVBQnBqPPPJI4P8LLrgANTU1mDFjRkCEhBOrz83p6DnfCRMmBPbl5OQgISEBd9xxB4qLi2lZaQcwcODAwP85OTno06cPMjMz8c9//tNRYpbQ5o9//GPg/x49eiAnJwcdO3bEqlWr0L9/fxtrRhiBRIjF3H///Rg1apRqmg4dOhjOv0+fPnj88cdRW1sLt9uN9PT0elH8R44cgcfjsbxxtfLc0tPT682y8J9Henp64G+4zo2FmfPt06cPzp49i/379yMrK4t7LsBv5+s0WrRogfj4eGa9nVpnUZo1a4YuXbpgz549uPrqq3H69GkcPXo0yBoSqefpr/ORI0fQqlWrwP4jR46gV69egTTK4OKzZ8/i559/jrhz7tChA1q0aIE9e/agf//+UXVusQCJEItJTU1FampqyPLfsmULUlJSAqPrvLy8ej8ktHTpUuTl5VletpXnlpeXh2nTpqGqqipgOl26dCk8Hg+ys7MDacJ1bizMnO+WLVsQFxcXOLe8vDw89NBDOHPmDBo2bAjg3LlkZWU50hUDAAkJCcjNzcXy5csDM7J8Ph+WL1+Ou+66y97KmeT48ePYu3cvbr31VuTm5qJhw4ZYvnw5hg4dCgDYuXMnDhw4ELZnzUrat2+P9PR0LF++PCA6vF4v1q9fH5itlpeXh6NHj6KsrAy5ubkAgBUrVsDn86FPnz52Vd0QP/74I/73v/8FBFc0nVtMYHdkbCzzww8/SJs3b5YeffRRKSkpSdq8ebO0efNm6dixY5IkSdJHH30kvfbaa1J5ebm0e/duafbs2VLjxo2lyZMnB/L4/vvvpcaNG0sPPPCA9N1330mzZs2S4uPjpc8++8yu05IkSfvczp49K3Xv3l0qKCiQtmzZIn322WdSamqqVFRUFMjDqeemZO3atdJzzz0nbdmyRdq7d6/09ttvS6mpqdKIESMCaY4ePSqlpaVJt956q/Ttt99K8+fPlxo3biy98sorNtZcm/nz50tut1t64403pO3bt0u333671KxZs6BZTZHA/fffL61atUrat2+f9NVXX0n5+flSixYtpKqqKkmSJOnOO++U2rZtK61YsULatGmTlJeXJ+Xl5dlcaz7Hjh0LvFMApGeffVbavHmz9MMPP0iSJEnTp0+XmjVrJv373/+WvvnmG2nIkCFS+/btpZMnTwbyGDBggHTBBRdI69evl7788kupc+fO0p/+9Ce7TimA2rkdO3ZM+tvf/iaVlpZK+/btk5YtWyb17t1b6ty5s3Tq1KlAHk49N6I+JEJsZOTIkRKAetvKlSslSTo3raxXr15SUlKS1KRJE6lnz57Syy+/LNXV1QXls3LlSqlXr15SQkKC1KFDB6mkpCT8J6NA69wkSZL2798vDRw4UGrUqJHUokUL6f7775fOnDkTlI8Tz01JWVmZ1KdPHyk5OVlKTEyUzj//fOnJJ58MahQlSZK2bt0qXXbZZZLb7ZZ+97vfSdOnT7epxvp48cUXpbZt20oJCQnSRRddJK1bt87uKunm5ptvllq1aiUlJCRIv/vd76Sbb75Z2rNnT+D7kydPSn/961+llJQUqXHjxtIf/vAH6fDhwzbWWJ2VK1cy36+RI0dKknRumu4jjzwipaWlSW63W+rfv7+0c+fOoDz+97//SX/605+kpKQkyePxSKNHjw4MEuxE7dxOnDghFRQUSKmpqVLDhg2lzMxM6bbbbqsnip16bkR9XJIkm+9JEARBEAQRJmidEIIgCIIgbIFECEEQBEEQtkAihCAIgiAIWyARQhAEQRCELZAIIQiCIAjCFkiEEARBEARhCyRCCIIgCIKwBRIhBEEQBEHYAokQgiAIgiBsgUQIQRAEQRC2QCKEIAgm//3vf5Geno4nn3wysG/t2rVISEjA8uXLbawZQRDRAv12DEEQXD799FNcf/31WLt2LbKystCrVy8MGTIEzz77rN1VIwgiCiARQhCEKuPGjcOyZctw4YUXory8HBs3boTb7ba7WgRBRAEkQgiCUOXkyZPo3r07KioqUFZWhh49ethdJYIgogSKCSEIQpW9e/fi0KFD8Pl82L9/v93VIQgiiiBLCEEQXE6fPo2LLroIvXr1QlZWFmbOnIny8nK0bNnS7qoRBBEFkAghCILLAw88gIULF2Lr1q1ISkrCFVdcgeTkZHzyySd2V40giCiA3DEEQTBZtWoVZs6cibfeegsejwdxcXF466238MUXX2DOnDl2V48giCiALCEEQRAEQdgCWUIIgiAIgrAFEiEEQRAEQdgCiRCCIAiCIGyBRAhBEARBELZAIoQgCIIgCFsgEUIQBEEQhC2QCCEIgiAIwhZIhBAEQRAEYQskQgiCIAiCsAUSIQRBEARB2AKJEIIgCIIgbIFECEEQBEEQtvD/AQqxWMja9IJaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# create raster with two bands, one ndvi of current month and one ndvi of the previous month\n", + "bands = [ge.workflow_builder.operators.GdalSource(\"ndvi\"),\n", + " ge.workflow_builder.operators.TimeShift(source=ge.workflow_builder.operators.GdalSource(\"ndvi\"), \n", + " shift_type=\"relative\", \n", + " granularity=\"months\", \n", + " value=-1)]\n", + "stack = ge.workflow_builder.operators.RasterStacker(sources = bands)\n", + "\n", + "# normalize the input to 0-1 and convert to float32\n", + "normalized = ge.workflow_builder.operators.BandwiseExpression(expression=\"x/255\", source=stack, output_type=\"F32\")\n", + "\n", + "# use the registered ml model for prediction\n", + "onnx = ge.workflow_builder.operators.Onnx(source=normalized, model=model_name)\n", + "\n", + "# convert the predictions to U8 because ONNX outputs I64 which our Gdal version output currently\n", + "converted_output = ge.workflow_builder.operators.RasterTypeConversion(source=onnx, output_data_type=\"U8\")\n", + "\n", + "workflow_dict = converted_output.to_workflow_dict()\n", + "\n", + "workflow = ge.register_workflow(workflow_dict)\n", + "\n", + "query = ge.QueryRectangle(\n", + " ge.BoundingBox2D(-180, -90, 180, 90),\n", + " ge.TimeInterval(np.datetime64('2014-04-01')),\n", + " ge.SpatialResolution(0.1, 0.1)\n", + ")\n", + "\n", + "data = workflow.get_xarray(\n", + " query\n", + ")\n", + "\n", + "data.plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/geoengine/__init__.py b/geoengine/__init__.py index bce610d9..a9bee083 100644 --- a/geoengine/__init__.py +++ b/geoengine/__init__.py @@ -18,6 +18,7 @@ from .layers import Layer, LayerCollection, LayerListing, LayerCollectionListing, \ LayerId, LayerCollectionId, LayerProviderId, \ layer_collection, layer +from .ml import register_ml_model, MlModelConfig, SerializableModel from .permissions import add_permission, remove_permission, add_role, remove_role, assign_role, revoke_role, \ ADMIN_ROLE_ID, REGISTERED_USER_ROLE_ID, ANONYMOUS_USER_ROLE_ID, Permission, Resource, UserId, RoleId from .tasks import Task, TaskId diff --git a/geoengine/ml.py b/geoengine/ml.py new file mode 100644 index 00000000..57252ec9 --- /dev/null +++ b/geoengine/ml.py @@ -0,0 +1,58 @@ +''' +Util functions for machine learning +''' + +from pathlib import Path +import tempfile +from typing import Protocol +from dataclasses import dataclass +from geoengine_openapi_client.models import MlModelMetadata, MlModel +import geoengine_openapi_client +from geoengine.auth import get_session +from geoengine.datasets import UploadId + + +# pylint: disable=invalid-name +class SerializableModel(Protocol): + '''A protocol for serializable models''' + + def SerializeToString(self) -> bytes: + ... + + +@dataclass +class MlModelConfig: + '''Configuration for an ml model''' + name: str + metadata: MlModelMetadata + file_name: str = "model.onnx" + display_name: str = "My Ml Model" + description: str = "My Ml Model Description" + + +def register_ml_model(onnx_model: SerializableModel, + model_config: MlModelConfig, + upload_timeout: int = 3600, + register_timeout: int = 60): + '''Uploads an onnx file and registers it as an ml model''' + + session = get_session() + + with geoengine_openapi_client.ApiClient(session.configuration) as api_client: + with tempfile.TemporaryDirectory() as temp_dir: + file_name = Path(temp_dir) / model_config.file_name + + with open(file_name, 'wb') as file: + file.write(onnx_model.SerializeToString()) + + uploads_api = geoengine_openapi_client.UploadsApi(api_client) + response = uploads_api.upload_handler([str(file_name)], + _request_timeout=upload_timeout) + + upload_id = UploadId.from_response(response) + + ml_api = geoengine_openapi_client.MLApi(api_client) + + model = MlModel(name=model_config.name, upload=str(upload_id), metadata=model_config.metadata, + display_name=model_config.display_name, description=model_config.description) + ml_api.add_ml_model(model, _request_timeout=register_timeout) diff --git a/geoengine/workflow_builder/operators.py b/geoengine/workflow_builder/operators.py index 0d01090d..aea279fd 100644 --- a/geoengine/workflow_builder/operators.py +++ b/geoengine/workflow_builder/operators.py @@ -728,7 +728,7 @@ def __init__(self, self.map_no_data = map_no_data def name(self) -> str: - return 'Expression' + return 'BandwiseExpression' def to_dict(self) -> Dict[str, Any]: params = { @@ -1157,7 +1157,7 @@ def __init__(self, source: RasterOperator, aggregate: BandNeighborhoodAggregateParams ): - '''Creates a new RasterStacker operator.''' + '''Creates a new BandNeighborhoodAggregate operator.''' self.source = source self.aggregate = aggregate @@ -1250,3 +1250,46 @@ def to_dict(self) -> Dict[str, Any]: "type": "average", "windowSize": self.window_size } + + +class Onnx(RasterOperator): + '''Onnx ML operator.''' + + source: RasterOperator + model: str + + # pylint: disable=too-many-arguments + def __init__(self, + source: RasterOperator, + model: str + ): + '''Creates a new Onnx operator.''' + self.source = source + self.model = model + + def name(self) -> str: + return 'Onnx' + + def to_dict(self) -> Dict[str, Any]: + return { + "type": self.name(), + "params": { + "model": self.model + }, + "sources": { + "raster": self.source.to_dict() + } + } + + @classmethod + def from_operator_dict(cls, operator_dict: Dict[str, Any]) -> 'Onnx': + if operator_dict["type"] != "Onnx": + raise ValueError("Invalid operator type") + + source = RasterOperator.from_operator_dict(operator_dict["sources"]["raster"]) + model = operator_dict["params"]["model"] + + return Onnx( + source=source, + model=model + ) diff --git a/setup.cfg b/setup.cfg index 25c4cfc3..2cafd8a4 100644 --- a/setup.cfg +++ b/setup.cfg @@ -18,7 +18,7 @@ package_dir = packages = find: python_requires = >=3.8 install_requires = - geoengine-openapi-client == 0.0.11 + geoengine-openapi-client == 0.0.12 geopandas >=0.9,<0.15 matplotlib >=3.5,<3.8 numpy >=1.21,<2 @@ -35,6 +35,7 @@ install_requires = xarray >=0.19,<2024.3 urllib3 >= 2.0, < 2.3 pydantic >= 1.10.5, < 2 + skl2onnx >=1.17,<2 [options.extras_require] dev =