-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocessor.cpp
594 lines (524 loc) · 14.1 KB
/
processor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#include<stdio.h>
#include<string.h>
#include<sys/mman.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<syslog.h>
#include<errno.h>
#include<math.h>
#include<omp.h>
#include<unordered_map>
#include<vector>
#include<set>
#include<algorithm>
#include<queue>
#include"processor.h"
#include"formatters.cpp"
//#define DEBUG
using std::unordered_set;
using std::unordered_map;
using std::vector;
using std::set;
using std::pair;
using std::make_pair;
using std::max;
using std::queue;
/* global data */
static struct int_term_t *terms;
static int nterms;
static struct int_link_t *links;
static int nlinks;
char *gene_buffer;
int input_size=0;
float_type pval_threshold;
unsigned int gene_count_threshold;
StrComp comp;
static unordered_map<const char*, struct int_term_t*, StrHash, StrEq> ids;
//using vector_map = pair<const char*, struct int_term_t*>;
//static vector<vector_map> ids;
//static unordered_set<const char*, StrHash, StrEq> gene_names;
static vector<const char*> gene_names;
static vector<const char*> input_genes;
static vector<struct int_term_t*> roots;
/* statistics functions */
float_type *logs;
int nlogs;
static inline float_type hypergeometric(int k, int n, int K, int N)
{
return exp((logs[K] + logs[N-K] + logs[n] + logs[N-n]) -
(logs[k] + logs[K-k] + logs[n-k] + logs[N-K-n+k] + logs[N]));
}
static inline float_type score(int matched_genes, int assoc_genes, int input_genes_num, int all_genes)
{
return ((float_type)matched_genes/(float_type)input_genes_num) / ((float_type)assoc_genes/(float_type)all_genes);
}
/* output thingy */
char *outbuf;
int outcursor,outlen;
static inline void print_char(char c)
{
outbuf[outcursor++]=c;
}
#define print_buf(BUF,LEN) do {\
memcpy(outbuf+outcursor,(BUF),(LEN));\
outcursor+=(LEN);\
} while (0)
static void print_flush()
{
if (outlen-outcursor<4096)
{
fwrite(outbuf,outcursor,1,stdout);
outcursor=0;
}
}
/* file opening */
struct mapped_file_t
{
int fd;
size_t size;
const char *data;
} obo,gaf;
static int open_file(const char *name, struct mapped_file_t *file)
{
int fd;
struct stat st;
fd=open(name,O_RDONLY|O_NOCTTY);
if (fd<0)
{
syslog(LOG_ERR,"can't open file '%s' (%d - %s)",name,errno,strerror(errno));
return 0;
}
if (fstat(fd,&st)<0)
{
syslog(LOG_ERR,"can't stat file '%s' (%d - %s)",name,errno,strerror(errno));
return 0;
}
file->size=st.st_size;
file->data=(char*)mmap(NULL,st.st_size,PROT_READ|PROT_WRITE,MAP_FILE|MAP_PRIVATE,fd,0);
if (!file->data)
{
syslog(LOG_ERR,"can't mmap file '%s' (%d - %s)",name,errno,strerror(errno));
return 0;
}
madvise((void*)file->data,st.st_size,MADV_SEQUENTIAL);
return 1;
}
/* file initialization */
static void load_obo()
{
terms=(struct int_term_t*)(obo.data+((int*)obo.data)[0]);
nterms=((int*)obo.data)[1];
ids.reserve(nterms);
#pragma omp for
for (int i=0;i<nterms;i++)
{
terms[i].id.str=obo.data+terms[i].id.idx;
terms[i].name.str=obo.data+terms[i].name.idx;
terms[i].prerender.str=obo.data+terms[i].prerender.idx;
new (&terms[i].genes) decltype(terms[i].genes)(1024);
new (&terms[i].intersect) decltype(terms[i].intersect)(16);
terms[i].parents.ptr=(struct int_term_t**)(obo.data+terms[i].parents.idx);
terms[i].children.ptr=(struct int_term_t**)(obo.data+terms[i].children.idx);
for (int j=0;j<terms[i].nparents;j++)
{
terms[i].parents.ptr[j]=(struct int_term_t*)(obo.data+(ptrdiff_t)terms[i].parents.ptr[j]);
}
for (int j=0;j<terms[i].nchildren;j++)
{
terms[i].children.ptr[j]=(struct int_term_t*)(obo.data+(ptrdiff_t)terms[i].children.ptr[j]);
}
}
for (int i=0;i<nterms;i++)
{
ids[terms[i].id.str]=terms+i;
//ids.push_back(make_pair(terms[i].id.str,terms+i));
if (terms[i].nparents==0)
{
roots.push_back(terms+i);
}
if (!strcmp(terms[i].id.str,"GO:0003676"))
{
for (int j=0;j<terms[i].nchildren;j++) { fprintf(stderr,"%s: child [%s]\n",terms[i].id.str,terms[i].children.ptr[j]->id.str); }
}
if (!strcmp(terms[i].id.str,"GO:0001067"))
{
for (int j=0;j<terms[i].nparents;j++) { fprintf(stderr,"%s: parent [%s]\n",terms[i].id.str,terms[i].parents.ptr[j]->id.str); }
}
}
}
int clashcounter,allcounter;
static void recurse_term(const char *gene, struct int_term_t *root)
{
bool ret=root->genes.push_gene(gene);
clashcounter+=(ret==false);
allcounter++;
if (!ret)
{
//fprintf(stderr,"gene %s is already on term %s\n",gene,root->id.str);
return;
}
root->genes_len+=strlen_bin(gene)+3;
for (int i=0;i<root->nparents;i++)
{
recurse_term(gene,root->parents.ptr[i]);
}
}
static void load_gaf()
{
const int ngenes=((int*)gaf.data)[1];
links=(struct int_link_t*)(gaf.data+((int*)gaf.data)[0]);
nlinks=((int*)gaf.data)[2];
logs=(float_type*)(gaf.data+((int*)gaf.data)[0]+(nlinks+ngenes)*sizeof(struct int_link_t));
gene_names.reserve(ngenes);
for (int i=0;i<nlinks+ngenes;i++)
{
links[i].gene.str=gaf.data+links[i].gene.idx;
links[i].term.str=gaf.data+links[i].term.idx;
}
for (int i=0;i<ngenes;i++)
{
gene_names.push_back(links[i].gene.str);
}
links+=ngenes;
for (int i=0;i<nlinks;i++)
{
auto it=ids.find(links[i].term.str);
//vector_map val=make_pair(links[i].term.str,nullptr);
//auto it=equal_range(ids.begin(),ids.end(),val,[] (const vector_map &g1, const vector_map &g2) -> bool {
// return comp(g1.first,g2.first);
//});
if (it==ids.end())
//if (it.first==it.second)
{
//syslog(LOG_WARNING,"tried to attach gene [%s] to unknown term [%s]",links[i].gene.str,links[i].term.str);
continue;
}
recurse_term(links[i].gene.str,(*it).second);
}
}
static void load_input(FILE *inp)
{
char buf[4096];
size_t *hash=(size_t*)buf;
char *gene=buf+sizeof(size_t);
gene[4095]=0;
while (fscanf(inp,"%4095s",gene)==1)
{
//*hash=StrHash::realhash(gene);
//auto i=gene_names.find(gene);
input_size+=strlen(gene)+20;
auto i=equal_range(gene_names.begin(),gene_names.end(),gene,comp);
//if (i==gene_names.end())
if (i.first==i.second)
{
syslog(LOG_WARNING,"unknown gene [%s] in association",gene);
continue;
}
input_genes.push_back(*i.first);
}
sort(input_genes.begin(),input_genes.end(),[] (const char *g1, const char *g2) -> bool { return g1<g2; });
}
/* main processing implementations */
#ifdef DEBUG
void gene_finder(struct int_term_t *root)
{
bool hasit=false;
for (auto &i : root->genes)
{
if (!strcmp(i,"DDB_G0290751"))
{
hasit=true;
break;
}
}
if (!hasit) { return; }
printf(">%s\n",root->id.str);
for (int i=0;i<root->nchildren;i++)
{
printf("<%s - %s\n",root->id.str,root->children.ptr[i]->id.str);
gene_finder(root->children.ptr[i]);
}
}
#endif
/* try to match the gene to the term and recursively propagate to children if matched */
static void propagate_intersections(const char *gene, struct int_term_t *root)
{
if (!root->genes.has_gene(gene)) { return; }
if (root->intersect.push_gene(gene))
{
root->intersect_len+=strlen_bin(gene)+3;
}
for (int i=0;i<root->nchildren;i++)
{
propagate_intersections(gene,root->children.ptr[i]);
}
}
/* is the germ eligible for rendering to output? */
static inline bool term_eligible(struct int_term_t *root)
{
return (root->pval<=pval_threshold && root->intersect.size()>=gene_count_threshold);
}
/*
* old-style tree dumper; structure the output dict into the full tree
*/
/* traverse the immediate children tree to find all eligible children */
static void termtree_find_eligible_children(struct int_term_t *root, queue<struct int_term_t*> &q, decltype(root->color) color)
{
for (int i=root->nchildren-1;i>=0;i--)
{
struct int_term_t *t=root->children.ptr[i];
if (t->color==color) { continue; }
t->color=color;
if (term_eligible(t)) { q.push(t); } else { termtree_find_eligible_children(t,q,color); }
}
}
static void termtree_dump_term(struct int_term_t *root);
static void termtree_dump_children(struct int_term_t *root)
{
queue<struct int_term_t*> children;
termtree_find_eligible_children(root,children,(decltype(root->color))root);
bool first=true;
while (!children.empty())
{
struct int_term_t *t=children.front(); children.pop();
if (!first) { print_char(','); }
first=false;
termtree_dump_term(t);
}
}
static void termtree_dump_term(struct int_term_t *root)
{
root->flags.dumped=1;
print_buf(root->prerender.str,root->prerender_len);
print_buf(root->genebuf,root->intersect_len);
print_buf(",\"children\":[",13);
termtree_dump_children(root);
print_char(']');
print_char('}');
print_flush();
}
/* prepare as much as possible for term dumping, in parallel */
static void term_preprocess(struct int_term_t *root)
{
if (!term_eligible(root)) { return; }
size_to_string((char*)root->prerender.str+16,root->intersect.size());
double_to_string((char*)root->prerender.str+32,root->pval);
double_to_string((char*)root->prerender.str+72,root->score);
size_to_string((char*)root->prerender.str+112,root->genes.size());
/*stringify matched gene list*/
char *tbuf=root->genebuf;
for (const char *g : root->intersect)
{
*(tbuf++)='"';
memcpy(tbuf,g,strlen_bin(g));
tbuf+=strlen_bin(g);
*(tbuf++)='"';
*(tbuf++)=',';
}
if (root->intersect.size()) { tbuf[-1]=' '; }
*(tbuf++)=']';
/*stringify whole associated gene list*/
*(tbuf++)='"';
memcpy(tbuf,root->id.str,strlen_bin(root->id.str));
tbuf+=strlen_bin(root->id.str);
*(tbuf++)='"';
*(tbuf++)=':';
*(tbuf++)='[';
for (const char *g : root->genes)
{
*(tbuf++)='"';
memcpy(tbuf,g,strlen_bin(g));
tbuf+=strlen_bin(g);
*(tbuf++)='"';
*(tbuf++)=',';
}
if (root->genes.size()) { tbuf[-1]=' '; }
*(tbuf++)=']';
}
/* main driver */
int main(int argc, const char *argv[])
{
if (argc<6)
{
fprintf(stderr,"invalid usage, need 5 parameters\n");
return 1; /* usage error */
}
openlog("gene_tree_processor",LOG_CONS|LOG_NDELAY|LOG_PID|LOG_PERROR,LOG_USER);
{
double tmp;
sscanf(argv[1],"%lf",&tmp);
pval_threshold=tmp;
sscanf(argv[2],"%u",&gene_count_threshold);
}
if (!open_file(argv[3],&obo)) { return 2; /* system error */ }
if (!open_file(argv[4],&gaf)) { return 2; /* system error */ }
load_obo();
load_gaf();
FILE *inp=fopen(argv[5],"rb");
load_input(inp);
fprintf(stderr,"loaded %d terms (%ld roots) and processed %d gene associations\n",nterms,roots.size(),nlinks);
fprintf(stderr,"gene linkage finished with %d clashes out of %d total inserts\n",clashcounter,allcounter);
fprintf(stderr,"loaded %ld input gene names, total %ld genes\n",input_genes.size(),gene_names.size());
/* match input genes to the term tree */
const int numinps=input_genes.size();
const int numroots=roots.size();
//#pragma omp for collapse(2)
for (int i=0;i<numinps;i++)
{
for (int j=0;j<numroots;j++)
{
propagate_intersections(input_genes[i],roots[j]);
}
}
/* prepare buffer for per-term gene lists */
int gbsize=0;
for (int i=0;i<nterms;i++)
{
terms[i].genes_len+=1+strlen_bin(terms[i].id.str)+4; // closing ] and term id
terms[i].intersect_len++; // closing ]
gbsize += terms[i].genes_len
+ terms[i].intersect_len;
}
gene_buffer=(char*)malloc(gbsize);
terms[0].genebuf=gene_buffer;
for (int i=1;i<nterms;i++)
{
terms[i].genebuf=terms[i-1].genebuf
+ terms[i-1].intersect_len
+ terms[i-1].genes_len;
}
/* calculate pval (hypergeometric probability) for every term
* and pre-render part of the output stringification
*/
int ngenes=gene_names.size();
#pragma omp for
for (int i=0;i<nterms;i++)
{
terms[i].pval=hypergeometric(
terms[i].intersect.size(),
numinps,
terms[i].genes.size(),
ngenes);
if (terms[i].genes.size()>1)
{
terms[i].score=score(
terms[i].intersect.size(),
terms[i].genes.size(),
numinps,
ngenes);
}
term_preprocess(terms+i);
}
/* generate the output monstrosity */
for (int i=0;i<nterms;i++)
{
outlen+=terms[i].intersect_len+terms[i].genes_len+terms[i].prerender_len;
}
outbuf=(char*)malloc(outlen*10);
if (!outbuf)
{
syslog(LOG_ERR,"can't allocate output buffer (%d - %s) (estimate %d)",errno,strerror(errno),outlen);
return 2;
}
print_buf("{\"total_genes\":",15);
outcursor+=size_to_string(outbuf+outcursor,gene_names.size());
print_buf(",\"tree\":{",9);
bool prevroot=false;
for (int i=(int)roots.size()-1;i>=0;i--)
{
if (roots[i]->flags.type == 1 && roots[i]->flags.obsolete == 0)
{
if (prevroot) { outbuf[outcursor++]=','; }
prevroot=true;
print_buf("\"BP\":[",6);
}
else if (roots[i]->flags.type == 2 && roots[i]->flags.obsolete == 0)
{
if (prevroot) { outbuf[outcursor++]=','; }
prevroot=true;
print_buf("\"CC\":[",6);
}
else if (roots[i]->flags.type == 3 && roots[i]->flags.obsolete == 0)
{
if (prevroot) { outbuf[outcursor++]=','; }
prevroot=true;
print_buf("\"MF\":[",6);
}
else
{
continue;
}
//dump_term(roots[i]);
//if (i) { print_char(','); }
bool prev=false;
for (int j=0;j<roots[i]->nchildren;j++)
{
if (!term_eligible(roots[i]->children.ptr[j])) { continue; }
if (prev) { outbuf[outcursor++]=','; }
prev=true;
termtree_dump_term(roots[i]->children.ptr[j]);
}
outbuf[outcursor++]=']';
}
print_char('}');
print_buf(",\"gene_associations\":{",22);
bool first=true;
for (int i=0;i<nterms;i++)
{
if (!terms[i].flags.dumped) { continue; }
if (!first) { print_char(','); }
first=false;
print_buf(terms[i].genebuf+terms[i].intersect_len,terms[i].genes_len);
print_flush();
}
print_char('}');
print_char('}');
#ifdef DEBUG
print_char('\n');
print_char('\n');
for (int i=0;i<nterms;i++)
{
if (
//strcmp(terms[i].id.str,"GO:0065007") &&
//strcmp(terms[i].id.str,"GO:0008194") &&
//strcmp(terms[i].id.str,"GO:0097359") &&
strcmp(terms[i].id.str,"GO:0009225") &&
//strcmp(terms[i].id.str,"GO:0009100") &&
true
) { continue; }
dump_term(&terms[i]);
print_char('\n');
print_char('\n');
}
const char *gene="DDB_G0283005";
int matches=0;
for (int i=0;i<nterms;i++)
{
for (auto &j : terms[i].genes)
{
if (!strcmp(j,gene))
{
printf(" -> %s | %s\n",terms[i].id.str,terms[i].name.str);
matches++;
break;
}
}
}
printf("matches: %d\n",matches);
printf("gene DDB_G0290751:\n");
for (auto &i : roots)
{
gene_finder(i);
}
#endif
outlen=0;
print_flush();
/*for (int i=0;i<nterms;i++)
{
printf(" %ld ",terms[i].intersect.size());
}
printf("\n");*/
return 0;
}