-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlogger.py
189 lines (156 loc) · 6.25 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import csv
import datetime
from collections import defaultdict
import numpy as np
import torch
import torchvision
from termcolor import colored
from torch.utils.tensorboard import SummaryWriter
import wandb
COMMON_TRAIN_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'),
('episode', 'E', 'int'), ('episode_length', 'L', 'int'),
('episode_reward', 'R', 'float'),
('buffer_size', 'BS', 'int'), ('fps', 'FPS', 'float'),
('total_time', 'T', 'time')]
COMMON_EVAL_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'),
('episode', 'E', 'int'), ('episode_length', 'L', 'int'),
('episode_reward', 'R', 'float'),
('total_time', 'T', 'time'), ('success_rate', 'SR', 'float')]
class AverageMeter(object):
def __init__(self):
self._sum = 0
self._count = 0
def update(self, value, n=1):
self._sum += value
self._count += n
def value(self):
return self._sum / max(1, self._count)
class MetersGroup(object):
def __init__(self, csv_file_name, formating, use_wandb):
self._csv_file_name = csv_file_name
self._formating = formating
self._meters = defaultdict(AverageMeter)
self._csv_file = None
self._csv_writer = None
self.use_wandb = use_wandb
def log(self, key, value, n=1):
self._meters[key].update(value, n)
def _prime_meters(self):
data = dict()
for key, meter in self._meters.items():
if key.startswith('train'):
key = key[len('train') + 1:]
else:
key = key[len('eval') + 1:]
key = key.replace('/', '_')
data[key] = meter.value()
return data
def _remove_old_entries(self, data):
rows = []
with self._csv_file_name.open('r') as f:
reader = csv.DictReader(f)
for row in reader:
if float(row['episode']) >= data['episode']:
break
rows.append(row)
with self._csv_file_name.open('w') as f:
writer = csv.DictWriter(f,
fieldnames=sorted(data.keys()),
restval=0.0)
writer.writeheader()
for row in rows:
writer.writerow(row)
def _dump_to_csv(self, data):
if self._csv_writer is None:
should_write_header = True
if self._csv_file_name.exists():
self._remove_old_entries(data)
should_write_header = False
self._csv_file = self._csv_file_name.open('a')
self._csv_writer = csv.DictWriter(self._csv_file,
fieldnames=sorted(data.keys()),
restval=0.0)
if should_write_header:
self._csv_writer.writeheader()
self._csv_writer.writerow(data)
self._csv_file.flush()
def _format(self, key, value, ty):
if ty == 'int':
value = int(value)
return f'{key}: {value}'
elif ty == 'float':
return f'{key}: {value:.04f}'
elif ty == 'time':
value = str(datetime.timedelta(seconds=int(value)))
return f'{key}: {value}'
else:
raise f'invalid format type: {ty}'
def _dump_to_console(self, data, prefix):
prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green')
pieces = [f'| {prefix: <14}']
for key, disp_key, ty in self._formating:
value = data.get(key, 0)
pieces.append(self._format(disp_key, value, ty))
print(' | '.join(pieces))
def dump(self, step, prefix):
if len(self._meters) == 0:
return
data = self._prime_meters()
data['frame'] = step
if self.use_wandb:
wandb_data = {prefix + '/' + key: val for key, val in data.items()}
self._dump_to_wandb(data=wandb_data)
self._dump_to_csv(data)
self._dump_to_console(data, prefix)
self._meters.clear()
def _dump_to_wandb(self, data):
wandb.log(data)
class Logger(object):
def __init__(self, log_dir, use_tb=False, use_wandb=False):
self._log_dir = log_dir
self._train_mg = MetersGroup(log_dir / 'train.csv',
formating=COMMON_TRAIN_FORMAT,
use_wandb=use_wandb)
self._eval_mg = MetersGroup(log_dir / 'eval.csv',
formating=COMMON_EVAL_FORMAT,
use_wandb=use_wandb)
if use_tb:
self._sw = SummaryWriter(str(log_dir / 'tb'))
else:
self._sw = None
self.use_wandb = use_wandb
def _try_sw_log(self, key, value, step):
if self._sw is not None:
self._sw.add_scalar(key, value, step)
def log(self, key, value, step):
assert key.startswith('train') or key.startswith('eval')
if type(value) == torch.Tensor:
value = value.item()
self._try_sw_log(key, value, step)
mg = self._train_mg if key.startswith('train') else self._eval_mg
mg.log(key, value)
def log_metrics(self, metrics, step, ty):
for key, value in metrics.items():
self.log(f'{ty}/{key}', value, step)
def dump(self, step, ty=None):
if ty is None or ty == 'eval':
self._eval_mg.dump(step, 'eval')
if ty is None or ty == 'train':
self._train_mg.dump(step, 'train')
def log_and_dump_ctx(self, step, ty):
return LogAndDumpCtx(self, step, ty)
class LogAndDumpCtx:
def __init__(self, logger, step, ty):
self._logger = logger
self._step = step
self._ty = ty
def __enter__(self):
return self
def __call__(self, key, value):
self._logger.log(f'{self._ty}/{key}', value, self._step)
def __exit__(self, *args):
self._logger.dump(self._step, self._ty)