Skip to content

Latest commit

 

History

History
86 lines (52 loc) · 2.2 KB

README.md

File metadata and controls

86 lines (52 loc) · 2.2 KB

Window Manufacturing Chatbot

A specialized chatbot for the window manufacturing industry, built with FastAPI and Groq's LLM API.

Project Overview

Key features:

  • FastAPI backend for API handling
  • LangChain integration for LLM interactions
  • Groq's LLM API for responses
  • Conversation context management
  • Simple web interface
  • Dockerized setup for easy deployment

Project Structure

  • app/: Contains the core application code.

    • api/: Handles API endpoints.
    • models/: Defines data models.
    • services/: Contains business logic and services.
    • utils/: Utility functions and helpers.
    • main.py: Entry point of the application.
  • tests/: Holds test cases.

  • docs/: Documentation files.

  • webapp/: Web application components.

    • templates/: HTML templates for the web interface.
    • app.py: Main file for the web application.

Setup and Installation

  1. Clone the repository:

    git clone https://github.com/gedasv/windows-chatbot.git

    cd windows-chatbot

  2. Set up the environment variables: Create a .env file in the root directory with the following content:

   GROQ_API_KEY=[groq_key_here]
   
   MODEL_NAME=llama3-8b-8192
  1. Build and run the Docker containers:

    docker-compose up --build

This will start both the backend API server and the web application. You should be able to accesss the web interface in http://127.0.0.1:5000/ in your browser.


To run the services separately for development, create a separate Python env, install requirements.txt in both app and webapp, and then:

  1. Start the backend:

    uvicorn app.main:app --host 0.0.0.0 --port 8000

  2. In a separate terminal, start the web application:

    python webapp/app.py

API Endpoints

  • POST /api/chat: Send a message to the chatbot
  • GET /api/conversation: Retrieve the current conversation history with context
  • POST /api/clear: Clear the current conversation history

Testing

There is also a little testing suite. You can run the tests using pytest (when in root folder):

pytest tests

Documentation

You can view the full HTML documentation online at https://gedasv.github.io/windows-chatbot/