You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ResourceExhaustedError Traceback (most recent call last)
~\Desktop\Research\Adding ML TO AR\GAN and cGAN\cFastGAN to generate motor images\SLE-GAN\train.py in
83 D_optimizer=D_optimizer,
84 images=image_batch,
---> 85 diff_augmenter_policies=diff_augment_policies)
86
87 G_loss_metric(G_loss)
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\def_function.py in call(self, *args, **kwds)
883
884 with OptionalXlaContext(self._jit_compile):
--> 885 result = self._call(*args, **kwds)
886
887 new_tracing_count = self.experimental_get_tracing_count()
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
948 # Lifting succeeded, so variables are initialized and we can run the
949 # stateless function.
--> 950 return self._stateless_fn(*args, **kwds)
951 else:
952 _, _, _, filtered_flat_args = \
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
ResourceExhaustedError: OOM when allocating tensor with shape[2,128,128,128] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node generator/StatefulPartitionedCall/up_sampling_block_4/up_sampling2d_4/resize/ResizeNearestNeighbor}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
[Op:__inference_train_step_20754]
Function call stack:
train_step
The text was updated successfully, but these errors were encountered:
Hello, I am testing your repo and I tried to run the train.py script on jupyter notebook and I got this error
Namespace(D_learning_rate=0.0002, G_learning_rate=0.0002, batch_size=2, data_folder='C:\Users\youss\Desktop\Research\augmented_data_zoom_cropped', diff_augment=False, discriminator_weights=None, epochs=50000, fid=False, fid_frequency=1, fid_number_of_images=128, generator_weights=None, name='experiment', override=True, resolution=256)
[Model G] output shape: (2, 256, 256, 3)
[Model D] real_fake output shape: (2, 5, 5, 1)
[Model D] image output shape(2, 128, 128, 3)
[Model D] image part output shape(2, 128, 128, 3)
Epoch 0 -------------
ResourceExhaustedError Traceback (most recent call last)
~\Desktop\Research\Adding ML TO AR\GAN and cGAN\cFastGAN to generate motor images\SLE-GAN\train.py in
83 D_optimizer=D_optimizer,
84 images=image_batch,
---> 85 diff_augmenter_policies=diff_augment_policies)
86
87 G_loss_metric(G_loss)
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\def_function.py in call(self, *args, **kwds)
883
884 with OptionalXlaContext(self._jit_compile):
--> 885 result = self._call(*args, **kwds)
886
887 new_tracing_count = self.experimental_get_tracing_count()
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
948 # Lifting succeeded, so variables are initialized and we can run the
949 # stateless function.
--> 950 return self._stateless_fn(*args, **kwds)
951 else:
952 _, _, _, filtered_flat_args = \
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\function.py in call(self, *args, **kwargs)
3038 filtered_flat_args) = self._maybe_define_function(args, kwargs)
3039 return graph_function._call_flat(
-> 3040 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
3041
3042 @ property
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1962 # No tape is watching; skip to running the function.
1963 return self._build_call_outputs(self._inference_function.call(
-> 1964 ctx, args, cancellation_manager=cancellation_manager))
1965 forward_backward = self._select_forward_and_backward_functions(
1966 args,
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
594 inputs=args,
595 attrs=attrs,
--> 596 ctx=ctx)
597 else:
598 outputs = execute.execute_with_cancellation(
~\anaconda3\envs\tens-gpu\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
ResourceExhaustedError: OOM when allocating tensor with shape[2,128,128,128] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node generator/StatefulPartitionedCall/up_sampling_block_4/up_sampling2d_4/resize/ResizeNearestNeighbor}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
[Op:__inference_train_step_20754]
Function call stack:
train_step
The text was updated successfully, but these errors were encountered: