-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagents.py
446 lines (365 loc) · 14.6 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import time
import math
import random
from cards import Deck, Hand
from abc import ABC, abstractmethod
from copy import deepcopy
from collections import defaultdict
import numpy as np
class Agent(ABC):
def __init__(self, deck: Deck = None):
self.deck = deck
self.hand = Hand()
def hit(self):
"""
Adds a card to the hand.
"""
self.hand.add_card(self.deck.deal_card())
@abstractmethod
def policy(self, opponent_hand: Hand):
"""
Implement a policy using the deck and opponent's hand.
"""
pass
class DealerAgent(Agent):
def policy(self, opponent_hand: Hand):
"""
Base dealer policy: hits if value under 17.
"""
return self.hand.value < 17
class QLearnAgent(Agent):
def __init__(self, deck, q_table=None, alpha=0.3, gamma=0.9, epsilon=.2, alpha_decay=0.999):
"""
Initialize the Q-learning agent.
"""
super().__init__(deck)
self.q_table = q_table if q_table is not None else self.create_q_table() # Initialize Q-table
self.alpha = alpha
self.gamma = gamma
self.epsilon = epsilon
self.alpha_decay = alpha_decay
def create_q_table(self): #DONE
"""
create a Q-table with all possible states and actions
"""
q_table = defaultdict(lambda: defaultdict(float))
for dealer_card in range(1, 12):
for player_value in range(1, 22):
for player_has_ace in [True, False]:
for deck_heat in ['hot', 'nuetral','cold']:
state = (dealer_card, player_value, player_has_ace, deck_heat)
q_table[state]['hit'] = 0
q_table[state]['stay'] = 0
return q_table
def print_q_table(self): #DONE
"""
Print the current Q-table
"""
#do the above programatically
for player_has_ace in [True, False]:
for deck_heat in ['hot', 'nuetral', 'cold']:
print("Q-Table for: " + deck_heat + " and " + ("Ace" if player_has_ace else "No Ace"))
print("Dealer Card: ", end=' ')
print()
for i in range(1, 11):
print(i, end=' ')
print()
for player_value in range(11, 22):
print(player_value, end=' ')
for dealer_card in range(1, 11):
state = (dealer_card, player_value, player_has_ace, deck_heat)
print('H' if self.q_table[state]['hit'] > self.q_table[state]['stay'] else 'S', end=' ')
print()
print()
def policy(self, opponent_hand): #DONE
"""
Decide the action (hit or stay) based on the Q-table for the given state
"""
# print the length of the hand
# print(len(self.hand.cards))
state = self._get_state(opponent_hand)
# if the state is new, we randomly choose an action
if state not in self.q_table:
return random.choice(['hit', 'stay'])
return True if self.q_table[state]['hit'] > self.q_table[state]['stay'] else False
def train(self, rounds): #DONE
"""
Train the agent for a given number of rounds
"""
for _ in range(rounds):
self.deck.start_round()
self._play_round()
self.alpha = self.alpha * self.alpha_decay
# self.print_q_table()
return self.q_table
def _play_round(self):
"""
Play a single round for training
"""
# Setting up the hand for the round
self.hand = Hand()
opponent_hand = Hand()
self.hand.add_card(self.deck.deal_card())
self.hand.add_card(self.deck.deal_card())
opponent_hand.add_card(self.deck.deal_card())
# Get the initial state
initial_pos = self._get_state(opponent_hand)
is_done = False
while not is_done: # while we haven't busted or stayed
action = self._choose_action(initial_pos) # choose an action
new_state, is_done = self._take_action(action, opponent_hand) # take the action
reward = 0
if is_done: # if we're done, we get the reward from the new state
future_reward = self._get_intermediate_reward(initial_pos, action, new_state, opponent_hand)
else: # if we're not done, we get the max reward from the new state
future_reward = max(self.q_table[new_state].values())
# update the q_table
result = self.q_table[initial_pos][action]
self.q_table[initial_pos][action] = (1 - self.alpha) * result + self.alpha * (reward + self.gamma * future_reward) # update the q_table using the equation from class
initial_pos = new_state # set the new state to the initial state
def _choose_action(self, state):
"""
Choose action based on the current state using an epsilon-greedy strategy
"""
if random.random() < self.epsilon or state not in self.q_table: # Epsilon-greedy exploration
return random.choice(['hit', 'stay'])
else: # Exploitation
return 'hit' if self.q_table[state]['hit'] > self.q_table[state]['stay'] else 'stay'
def _take_action(self, action, opponent_hand):
"""
Take the chosen action and find out the reward and new state
"""
if action == 'hit':
self.hit()
new_state = self._get_state(opponent_hand) # get us the new state from hitting
is_done = (self.hand.value > 21) or (action == 'stay') # if we bust or stay, we're done
return new_state, is_done
def _get_intermediate_reward(self, state, action, new_state, opponent_hand):
"""
Get the intermediate reward for taking the given action and transitioning to the new state
"""
# if we bust, we get a reward of -1
if new_state[1] > 21:
return -1
# if we stay, we get a reward of 0
elif action == 'stay':
# we need to play out the dealer's turn to get the reward
while opponent_hand.value < 17:
opponent_hand.add_card(self.deck.deal_card())
outcome = self._determine_outcome(opponent_hand)
reward = self._get_reward(outcome)
return reward
# if we hit and get 21, we get a reward of 1
elif new_state[1] == 21:
return 1
# if we hit and don't bust or get 21, we get a reward of 0
else:
return 0
def _get_reward(self, outcome):
"""
calc the reward based on the game outcome- only use in the END of the game
"""
if outcome == 'win':
# print("We win")
return 1
elif outcome == 'lose':
# print("Womp womp womp we lost")
return -1
else: # tie
# print("womp womp we tie")
return 0
def _determine_outcome(self, opponent_hand):
"""
Determine the outcome of the game based on the final hand values of the player and opponent. could merge with get_reward/replace with compute_winner
"""
if self.hand.value > 21: # if we bust, we lose
return 'lose'
elif opponent_hand.value > 21 or self.hand.value > opponent_hand.value: # if the dealer busts or we have a higher value, we win
return 'win'
elif self.hand.value < opponent_hand.value: # if the dealer has a higher value, we lose
return 'lose'
else:
return 'tie'
def _get_state(self, opponent_hand): # THIS WORKS
"""
set the current state based on the game context
"""
dealer_value = opponent_hand.value
player_value = self.hand.value
player_has_ace = 'A' in [card.value for card in self.hand.cards]
# print(len(self.hand.cards))
if self.deck.heat < -3:
deck_heat = 'cold'
elif self.deck.heat > 3:
deck_heat = 'hot'
else:
deck_heat = 'nuetral'
return (dealer_value, player_value, player_has_ace, deck_heat)
class MonteCarloAgent(Agent):
"""
MonteCarloAgent utilizes MonteCarlo methods to determine whether to hit or not.
"""
def __init__(self, deck: Deck = None, **kwargs):
super().__init__(deck)
self.explore_time = kwargs.get("explore_time", 0.005)
def policy(self, opponent_hand: Hand):
"""
Utilizes MonteCarlo methods to determine whether to hit or not.
"""
start_state = BlackjackStateMCTS(self.hand, opponent_hand, self.deck)
# Edge case: if player has >= 21 then game over
if start_state.is_terminal():
return False
root = MonteCarloNode(start_state, None)
start_time = time.time()
while time.time() - start_time < self.explore_time:
# Gets the leaf node in the UCB tree
node = root.find_leaf_node()
# Determines the random terminal value of the node
reward = node.simulate()
# Updates the rewards of the parents
node.update_rewards(reward)
# If given no time to explore, defaults to False (stand)
if root.total_visits == 0:
return False
node = root.get_best_average_child()
return True if node.parent_action == "hit" else False
class BlackjackStateMCTS:
def __init__(self, my_hand: Hand, dealer_hand: Hand, deck: Deck) -> None:
self.my_hand = deepcopy(my_hand)
self.dealer_hand = deepcopy(dealer_hand)
self.deck = deepcopy(deck)
# True if player stands
self.stand = False
def is_terminal(self):
return self.my_hand.value >= 21 or self.stand
def get_actions(self):
return ["hit", "stand"]
def find_terminal_value(self):
# Create dealer agent with same hand!
dealer = DealerAgent(deepcopy(self.deck))
dealer.hand = deepcopy(self.dealer_hand)
# Simulate dealer's turn
while dealer.policy(self.my_hand):
dealer.hit()
# Determine winner
winner = self.my_hand.compute_winner(dealer.hand)
return winner
def successor(self, action):
"""
Returns the successor state of the current state given an action.
"""
next_state = deepcopy(self)
if action == "hit":
next_state.my_hand.add_card(next_state.deck.deal_card())
else:
next_state.stand = True
return next_state
def refresh_cards(self, parent_deck: Deck, parent_hand: Hand, parent_action: str):
"""
Refreshes the cards in the game state.
"""
self.deck = parent_deck
self.my_hand = parent_hand
if parent_action == "hit":
self.my_hand.add_card(self.deck.deal_card())
def __str__(self) -> str:
string_form = f""" ---
Hand: {self.my_hand}
Stand: {self.stand}
"""
return string_form
class MonteCarloNode:
def __init__(self, state:BlackjackStateMCTS, parent=None, parent_action=None):
self.state = state
self.parent = parent
self.parent_action = parent_action
self.total_visits = 0
self.total_rewards = 0
self.children = []
self.missing_child_actions = self.state.get_actions()
def is_fully_expanded(self):
"""
Determines if the node is fully expanded.
"""
return len(self.missing_child_actions) == 0
def get_average_reward(self):
if self.total_visits == 0:
return 0
return self.total_rewards / self.total_visits
def get_best_average_child(self):
"""
Returns the child node with the best average reward.
"""
node = max(self.children, key = lambda x: x.get_average_reward())
return node
def get_ucb_value(self, parent_total_visits):
"""
Returns the UCB value of the node using parents visits and actor
"""
value = self.get_average_reward() + math.sqrt(2 * math.log(parent_total_visits) / self.total_visits)
return value
def get_best_ucb_child(self):
"""
Returns the child node with the best UCB value.
"""
node = max(self.children, key = lambda x: x.get_ucb_value(self.total_visits))
return node
def expand(self):
"""
Expands the node by adding a new child node from an unexplored action.
"""
action = self.missing_child_actions.pop()
next_state = self.state.successor(action)
child_node = MonteCarloNode(next_state, parent=self, parent_action=action)
self.children.append(child_node)
return child_node
def find_leaf_node(self):
"""
Returns the leaf node of the tree using UCB values.
"""
current_node = self
while not current_node.state.is_terminal():
if not current_node.is_fully_expanded():
return current_node.expand()
else:
# Refresh node by building a fresh hand from parent node
current_node = current_node.get_best_ucb_child()
current_node.state.refresh_cards(
deepcopy(current_node.parent.state.deck),
deepcopy(current_node.parent.state.my_hand),
current_node.parent_action)
return current_node
def simulate(self):
"""
Returns the terminal value of the node by randomly simulating game.
"""
state = self.state
while not state.is_terminal():
state = state.successor(random.choice(state.get_actions()))
payoff = state.find_terminal_value()
return payoff
def update_rewards(self, reward):
"""
Updates the total reward and total visits of the node and all its parents.
"""
parent_node = self
while parent_node is not None:
parent_node.total_rewards += reward
parent_node.total_visits += 1
parent_node = parent_node.parent
def __str__(self) -> str:
ucb_value = "N/A"
if self.parent:
ucb_value = self.get_ucb_value(self.parent.total_visits)
string_form = f"""
Total Visits: {self.total_visits}
Total Rewards: {self.total_rewards}
Average Reward: {self.get_average_reward()}
UCB Value: {ucb_value}
Parent Action: {self.parent_action}
State: {self.state}
Children: {self.children}
IsFullyExpanded: {self.is_fully_expanded()}
"""
return string_form