-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathfinetune_IJEPA.py
156 lines (130 loc) · 4.73 KB
/
finetune_IJEPA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import pytorch_lightning as pl
import torch.nn as nn
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from pytorch_lightning.callbacks import (
ModelCheckpoint,
LearningRateMonitor,
ModelSummary,
)
from pytorch_lightning.loggers import WandbLogger
from model import IJEPA_base
from pretrain_IJEPA import IJEPA
'''Dummy Dataset'''
class IJEPADataset(Dataset):
def __init__(self,
dataset_path,
stage='train',
):
super().__init__()
img1 =torch.randn(3, 224, 224)
self.data = img1.repeat(100, 1, 1, 1)
label = torch.tensor([0., 0., 0., 1., 0.])
self.label = label.repeat(100, 1)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index], self.label[index]
'''
Placeholder for datamodule in pytorch lightning
'''
class D2VDataModule(pl.LightningDataModule):
def __init__(self,
dataset_path,
batch_size=16,
num_workers=4,
pin_memory=True,
shuffle=True
):
super().__init__()
self.dataset_path = dataset_path
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.shuffle = shuffle
def setup(self, stage=None):
self.train_dataset = IJEPADataset(dataset_path=self.dataset_path, stage='train')
self.val_dataset = IJEPADataset(dataset_path=self.dataset_path, stage='val')
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=self.shuffle,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
'''
Finetune IJEPA
'''
class IJEPA_FT(pl.LightningModule):
#take pretrained model path, number of classes, learning rate, weight decay, and drop path as input
def __init__(self, pretrained_model_path, num_classes, lr=1e-3, weight_decay=0, drop_path=0.1):
super().__init__()
self.save_hyperparameters()
#set parameters
self.lr = lr
self.weight_decay = weight_decay
self.drop_path = drop_path
#define model layers
self.pretrained_model = IJEPA.load_from_checkpoint(pretrained_model_path)
self.pretrained_model.model.mode = "test"
self.pretrained_model.model.layer_dropout = self.drop_path
self.average_pool = nn.AvgPool1d(kernel_size=self.pretrained_model.num_tokens)
#mlp head
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.pretrained_model.embed_dim),
nn.Linear(self.pretrained_model.embed_dim, num_classes),
)
#define loss
self.criterion = nn.CrossEntropyLoss()
def forward(self, x):
x = self.pretrained_model.model(x)
x = x.permute(0, 2, 1)
x = self.average_pool(x) #conduct average pool like in paper
x = x.squeeze(-1)
x = self.mlp_head(x) #pass through mlp head
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y) #calculate loss
accuracy = (y_hat.argmax(dim=1) == y.argmax(dim=1)).float().mean() #calculate accuracy
self.log('train_accuracy', accuracy)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
accuracy = (y_hat.argmax(dim=1) == y.argmax(dim=1)).float().mean()
self.log('val_loss', loss)
self.log('val_accuracy', accuracy)
return loss
def predict_step(self, batch, batch_idx, dataloader_idx):
return self(batch[1])
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay)
return optimizer
if __name__ == '__main__':
dataset = D2VDataModule(dataset_path='data')
model = IJEPA_FT(pretrained_model_path='.ckpt', num_classes=5)
lr_monitor = LearningRateMonitor(logging_interval="step")
model_summary = ModelSummary(max_depth=2)
trainer = pl.Trainer(
accelerator='cpu',
precision=16,
max_epochs=10,
callbacks=[lr_monitor, model_summary],
gradient_clip_val=.1,
)
trainer.fit(model, dataset)