-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreference.py
194 lines (151 loc) · 9.95 KB
/
reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import pickle as cPickle
import sys
import numpy as np
from sklearn.utils import check_random_state
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import theano
import theano.tensor as T
import lasagne
from embed_funcs import WordEmbeddings
#theano.config.optimizer='None'
#theano.config.exception_verbosity='high'
DISCR_HIDDEN_DIM = 600
DISCR_NUM_HIDDEN_LAYERS = 10
HALF_BATCH_SIZE = 128
d = 100
ADV_PENALTY = 1.0
#ADV_PENALTY = 0.1
COS_PENALTY = 1.0
ACCUMULATOR_EXPAVG = 0.1
MODEL_FILENAME = 'emb_lin_adversarial_resnet_cos_autoenc_cos__m50000_en2de.pkl'
rng = check_random_state(0)
leaky_relu_gain = np.sqrt(2/(1+0.01**2))
def cosine_sim(a_mat, b_mat):
dp = (a_mat * b_mat).sum(axis=1)
a_norm = a_mat.norm(2, axis=1)
b_norm = b_mat.norm(2, axis=1)
return dp / (a_norm * b_norm)
class Discriminator(object):
def __init__(self, embedding_dim=100, num_hidden_layers=2, hidden_dim=200, in_dropout_p=0.2, hidden_dropout_p=0.5, hidden2out_dropout_p=0.5, update_hyperparams={'learning_rate': 0.01}):
self.embedding_dim = embedding_dim
self.num_hidden_layers = num_hidden_layers
self.hidden_dim = hidden_dim
self.in_dropout_p = in_dropout_p
self.hidden_dropout_p = hidden_dropout_p
self.hidden2out_dropout_p = hidden2out_dropout_p
self.update_hyperparameters = update_hyperparams
print('Building computation graph for discriminator...')
self.input_var = T.matrix('input')
self.target_var = T.matrix('targer')
self.l_in = lasagne.layers.InputLayer(shape=(None, self.embedding_dim), input_var=T.tanh(self.input_var), name='l_in')
self.l_in_dr = lasagne.layers.DropoutLayer(self.l_in, self.in_dropout_p)
self.l_prehid = lasagne.layers.batch_norm(lasagne.layers.DenseLayer(self.l_in_dr, num_units=self.hidden_dim, nonlinearity=lasagne.nonlinearities.leaky_rectify, W=lasagne.init.GlorotUniform(gain=leaky_relu_gain), name='l_prehid'))
self.layers = [self.l_in, self.l_in_dr, self.l_prehid]
for i in range(self.num_hidden_layers):
l_hid_predr = lasagne.layers.DropoutLayer(self.layers[-1], self.hidden_dropout_p)
l_hid = lasagne.layers.batch_norm(lasagne.layers.DenseLayer(l_hid_predr, num_units=self.hidden_dim, nonlinearity=lasagne.nonlinearities.leaky_rectify, W=lasagne.init.GlorotUniform(gain=leaky_relu_gain), name=('l_hid_%s' % i)))
l_hid_sum = lasagne.layers.ElemwiseSumLayer([self.layers[-1], l_hid])
self.layers.append(l_hid_predr)
self.layers.append(l_hid)
self.layers.append(l_hid_sum)
self.l_preout_predr = lasagne.layers.DropoutLayer(self.layers[-1], self.hidden2out_dropout_p)
self.l_preout = lasagne.layers.batch_norm(lasagne.layers.DenseLayer(self.l_preout_predr, num_units=1, nonlinearity=None, name='l_preout'))
self.l_out = lasagne.layers.NonlinearityLayer(self.l_preout, nonlinearity=lasagne.nonlinearities.sigmoid, name='l_out')
self.prediction = lasagne.layers.get_output(self.l_out)
self.loss = lasagne.objectives.binary_crossentropy(self.prediction, self.target_var).mean()
self.accuracy = T.eq(T.ge(self.prediction, 0.5), self.target_var).mean()
self.params = lasagne.layers.get_all_params(self.l_out, trainable=True)
self.updates = lasagne.updates.adam(self.loss, self.params, **update_hyperparams)
print ('Compiling discriminator...')
self.train_fn = theano.function([self.input_var, self.target_var], [self.loss, self.accuracy], updates=self.updates)
self.eval_fn = theano.function([self.input_var, self.target_var], [self.loss, self.accuracy])
#discriminator_0 = Discriminator(d, DISCR_NUM_HIDDEN_LAYERS, DISCR_NUM_HIDDEN_LAYERS, in_dropout_p=0.0, hidden_dropout_p=0.0, hidden2out_dropout_p=0.0, update_hyperparams={'learning_rate': 0.01})
#discriminator_1 = Discriminator(d, DISCR_NUM_HIDDEN_LAYERS, DISCR_NUM_HIDDEN_LAYERS, in_dropout_p=0.0, hidden_dropout_p=0.0, hidden2out_dropout_p=0.0, update_hyperparams={'learning_rate': 0.01})
discriminator_0 = Discriminator(d, DISCR_NUM_HIDDEN_LAYERS, DISCR_NUM_HIDDEN_LAYERS, in_dropout_p=0.0, hidden_dropout_p=0.3, hidden2out_dropout_p=0.1, update_hyperparams={'learning_rate': 0.01})
discriminator_1 = Discriminator(d, DISCR_NUM_HIDDEN_LAYERS, DISCR_NUM_HIDDEN_LAYERS, in_dropout_p=0.0, hidden_dropout_p=0.3, hidden2out_dropout_p=0.1, update_hyperparams={'learning_rate': 0.01})
X = np.zeros((2*HALF_BATCH_SIZE, d), dtype=theano.config.floatX)
target_mat = np.vstack([np.ones((HALF_BATCH_SIZE, 1)), np.zeros((HALF_BATCH_SIZE, 1))]).astype(theano.config.floatX) # En = 1, It = 0
print('Building computation graph for generator...')
gen_input_var = T.matrix('gen_input_var')
gen_adversarial_input_var = T.matrix('gen_adversarial_input')
gen_l_in = lasagne.layers.InputLayer(shape=(None, d), input_var=gen_input_var, name='gen_l_in')
gen_l_out = lasagne.layers.DenseLayer(gen_l_in, num_units=d, nonlinearity=None, W=lasagne.init.Orthogonal(), name='gen_l_out')
generation = lasagne.layers.get_output(gen_l_out)
generation.name='generation'
deterministic_generation = lasagne.layers.get_output(gen_l_out, deterministic=True)
deterministic_generation.name='generation'
discriminator_prediction = lasagne.layers.get_output(discriminator_0.l_out, T.tanh(generation), deterministic=True)
adv_gen_loss = -T.log(1.0 - discriminator_prediction).mean()
adv_gen_loss.name='adv_gen_loss'
cos_gen_loss = 1.0 - cosine_sim(gen_adversarial_input_var, generation).mean()
cos_gen_loss.name = 'cos_gen_loss'
dec_l_out = lasagne.layers.DenseLayer(gen_l_out, num_units=d, nonlinearity=None, W=gen_l_out.W.T, name='dec_l_out')
reconstruction = lasagne.layers.get_output(dec_l_out)
deterministic_reconstruction = lasagne.layers.get_output(dec_l_out, deterministic=True)
#recon_gen_loss = (gen_input_var - reconstruction).norm(2, axis=1).mean()
recon_gen_loss = 1.0 - cosine_sim(gen_input_var, reconstruction).mean()
recon_gen_loss.name='recon_gen_loss'
gen_loss = recon_gen_loss + ADV_PENALTY * adv_gen_loss + COS_PENALTY * cos_gen_loss
gen_loss.name='gen_loss'
gen_params = lasagne.layers.get_all_params(dec_l_out, trainable=True)
gen_updates = lasagne.updates.adam(gen_loss, gen_params, learning_rate=0.001)
recon_and_cos_gen_updates = lasagne.updates.adam(recon_gen_loss + COS_PENALTY * cos_gen_loss, gen_params, learning_rate=0.001)
grad_norm = T.grad(adv_gen_loss, generation).norm(2, axis=1).mean()
print('Compiling generator...')
gen_fn = theano.function([gen_input_var], deterministic_generation)
recon_fn = theano.function([gen_input_var], deterministic_reconstruction)
gen_train_pred_grad_norm_fn = theano.function([gen_input_var, gen_adversarial_input_var], [gen_loss, recon_gen_loss, adv_gen_loss, cos_gen_loss, deterministic_generation, grad_norm], updates=gen_updates)
gen_train_recon_and_cos_only_pred_grad_norm_fn = theano.function([gen_input_var, gen_adversarial_input_var], [gen_loss, recon_gen_loss, adv_gen_loss, cos_gen_loss, deterministic_generation, grad_norm], updates=recon_and_cos_gen_updates)
gen_eval_pred_grad_norm_fn = theano.function([gen_input_var, gen_adversarial_input_var], [gen_loss, recon_gen_loss, adv_gen_loss, cos_gen_loss, deterministic_generation, grad_norm])
accumulators = np.zeros(11)
def train_batch(batch_id = 1, print_every_n = 1):
id_hi = next(we_batches_hi)
id_en = next(we_batches_en)
# print(id_hi,HALF_BATCH_SIZE )
X[HALF_BATCH_SIZE:] = we_hi.vectors[id_hi]
X[:HALF_BATCH_SIZE] = we_en.vectors[id_en]
skip_generator = (batch_id > 1) and (accumulators[0] < 0.51)
# Generator
#gen_loss_val = gen_train_fn(X[:HALF_BATCH_SIZE])
#X_gen = gen_fn(X[:HALF_BATCH_SIZE])
#preout_grad_norm_val = preout_grad_norm_fn(X_gen)
gen_loss_val, recon_gen_loss_val, adv_gen_loss_val, cos_gen_loss_val, X_gen, preout_grad_norm_val = gen_train_pred_grad_norm_fn(X[:HALF_BATCH_SIZE], X[HALF_BATCH_SIZE:]) if not skip_generator else gen_train_recon_and_cos_only_pred_grad_norm_fn(X[:HALF_BATCH_SIZE], X[HALF_BATCH_SIZE:])
skip_discriminator = (batch_id > 1) and (accumulators[0] > 0.99)
# Discriminator
X[:HALF_BATCH_SIZE] = X_gen
loss_val, accuracy_val = discriminator_0.train_fn(X, target_mat) if not skip_discriminator else discriminator_0.eval_fn(X, target_mat)
alt_loss_val, alt_accuracy_val = discriminator_1.train_fn(X, target_mat) if not skip_discriminator else discriminator_1.eval_fn(X, target_mat)
if batch_id == 1:
accumulators[:] = np.array([accuracy_val, loss_val, alt_accuracy_val, alt_loss_val, gen_loss_val, recon_gen_loss_val, adv_gen_loss_val, cos_gen_loss_val, float(skip_generator), float(skip_discriminator), preout_grad_norm_val])
else:
accumulators[:] = ACCUMULATOR_EXPAVG * np.array([accuracy_val, loss_val, alt_accuracy_val, alt_loss_val, gen_loss_val, recon_gen_loss_val, adv_gen_loss_val, cos_gen_loss_val, float(skip_generator), float(skip_discriminator), preout_grad_norm_val]) + (1.0 - ACCUMULATOR_EXPAVG) * accumulators
if batch_id % print_every_n == 0:
print('batch: %s, acc: %s, loss: %s, alt acc: %s, alt loss: %s, gloss: %s, grloss: %s, galoss: %s, gcloss: %s, gskip: %s, dskip: %s, gn: %s' % tuple([batch_id] + accumulators.tolist()))
def save_model():
params_vals = lasagne.layers.get_all_param_values([discriminator_0.l_out, discriminator_1.l_out, gen_l_out])
cPickle.dump(params_vals, open(MODEL_FILENAME, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
print('Loading Hindi embeddings...')
we_hi = WordEmbeddings()
we_hi.load_from_word2vec('./models/wv_hindi')
we_hi.downsample_frequent_words()
skn_hi = StandardScaler()
we_hi.vectors = skn_hi.fit_transform(we_hi.vectors).astype(theano.config.floatX)
we_batches_hi = we_hi.sample_batches(batch_size=HALF_BATCH_SIZE, random_state=rng)
print('Loading English embeddings...')
we_en = WordEmbeddings()
we_en.load_from_word2vec('./models/wv_english')
we_en.downsample_frequent_words()
skn_en = StandardScaler()
we_en.vectors = skn_en.fit_transform(we_en.vectors).astype(theano.config.floatX)
we_batches_en = we_en.sample_batches(batch_size=HALF_BATCH_SIZE, random_state=rng)
print('Ready to train.')
print('Training...')
for i in range(10000000):
train_batch(i+1, 100)
if ((i+1) % 10000) == 0:
print('Saving model...')
save_model()
print('Saving model...')
save_model()