-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdreamer.py
547 lines (496 loc) · 21.7 KB
/
dreamer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import argparse
import collections
import functools
import os
import io
import pathlib
import sys
import warnings
from clearml import Task, Dataset, InputModel
from munch import DefaultMunch
import json
os.environ["MUJOCO_GL"] = "egl"
import numpy as np
import ruamel.yaml as yaml
sys.path.append(str(pathlib.Path(__file__).parent/"dreamerv3-torch-submod"))
import exploration as expl
import models
import tools
import envs.wrappers as wrappers
import torch
from torch import nn
from torch import distributions as torchd
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
import PIL.Image
to_np = lambda x: x.detach().cpu().numpy()
# PATH_SCENARIO = "b87ac090f583466999b3efab4a4fe799" # Anomaly scenarios 1
PATH_SCENARIO = "c07cb0b5bfc44c27954fe2c0b0f1ca98" # Anomaly scenarios 2
# PATH_SCENARIO = "019ab9ad127546709f1bccbb172f08fa"
PATH_SCENARIO_DIR = "/fzi/ids/jk639/no_backup/data" # change to the direction where you save scenario set
# PATH_MODEL = "2438e8e1fccd43c7a8a76f97ed698e6e" # 1 stop
PATH_MODEL = "7a432d74fa41410aa57ea2579b4b789e" # Base dreamer
class Dreamer(nn.Module):
def __init__(self, obs_space, act_space, config, logger, dataset):
super(Dreamer, self).__init__()
self._config = config
self._logger = logger
self._should_log = tools.Every(config.log_every)
batch_steps = config.batch_size * config.batch_length
self._should_train = tools.Every(batch_steps / config.train_ratio)
self._should_pretrain = tools.Once()
self._should_reset = tools.Every(config.reset_every)
self._should_expl = tools.Until(int(config.expl_until / config.action_repeat))
self._metrics = {}
self._step = count_steps(config.traindir)
self._update_count = 0
# Schedules.
config.actor_entropy = lambda x=config.actor_entropy: tools.schedule(
x, self._step
)
config.actor_state_entropy = (
lambda x=config.actor_state_entropy: tools.schedule(x, self._step)
)
config.imag_gradient_mix = lambda x=config.imag_gradient_mix: tools.schedule(
x, self._step
)
self._dataset = dataset
self._wm = models.WorldModel(obs_space, act_space, self._step, config)
self._task_behavior = models.ImagBehavior(
config, self._wm, config.behavior_stop_grad
)
# if config.compile:
# self._wm = torch.compile(self._wm)
# self._task_behavior = torch.compile(self._task_behavior)
reward = lambda f, s, a: self._wm.heads["reward"](f).mean
self._expl_behavior = dict(
greedy=lambda: self._task_behavior,
random=lambda: expl.Random(config),
plan2explore=lambda: expl.Plan2Explore(config, self._wm, reward),
)[config.expl_behavior]().to(self._config.device)
def __call__(self, obs, reset, state=None, reward=None, training=True):
step = self._step
if self._should_reset(step):
state = None
if state is not None and reset.any():
mask = 1 - reset
for key in state[0].keys():
for i in range(state[0][key].shape[0]):
state[0][key][i] *= mask[i]
for i in range(len(state[1])):
state[1][i] *= mask[i]
if training:
steps = (
self._config.pretrain
if self._should_pretrain()
else self._should_train(step)
)
for _ in range(steps):
self._train(next(self._dataset))
self._update_count += 1
self._metrics["update_count"] = self._update_count
if self._should_log(step):
# for name, val`ues in self._metrics.items():
# self._logger.scalar(name, float(np.mean(values)))
# self._metrics[name] = []
# if self._config.video_pred_log:
# openl = self._wm.video_pred(next(self._dataset))
# self._logger.video("train_openl", to_np(openl))
self._logger.write(fps=True)
policy_output, state = self._policy(obs, state, training)
if training:
self._step += len(reset)
self._logger.step = self._config.action_repeat * self._step
return policy_output, state
def _policy(self, obs, state, training):
if state is None:
batch_size = len(obs["image"])
latent = self._wm.dynamics.initial(len(obs["image"]))
action = torch.zeros((batch_size, self._config.num_actions)).to(
self._config.device
)
else:
latent, action = state
obs = self._wm.preprocess(obs)
embed = self._wm.encoder(obs)
latent, _ = self._wm.dynamics.obs_step(
latent, action, embed, obs["is_first"], self._config.collect_dyn_sample
)
if self._config.eval_state_mean:
latent["stoch"] = latent["mean"]
feat = self._wm.dynamics.get_feat(latent)
if not training:
actor = self._task_behavior.actor(feat)
action = actor.mode()
elif self._should_expl(self._step):
actor = self._expl_behavior.actor(feat)
action = actor.sample()
else:
actor = self._task_behavior.actor(feat)
action = actor.sample()
logprob = actor.log_prob(action)
latent = {k: v.detach() for k, v in latent.items()}
action = action.detach()
if self._config.actor_dist == "onehot_gumble":
action = torch.one_hot(
torch.argmax(action, dim=-1), self._config.num_actions
)
action = self._exploration(action, training)
policy_output = {"action": action, "logprob": logprob}
state = (latent, action)
return policy_output, state
def _exploration(self, action, training):
amount = self._config.expl_amount if training else self._config.eval_noise
if amount == 0:
return action
if "onehot" in self._config.actor_dist:
probs = amount / self._config.num_actions + (1 - amount) * action
return tools.OneHotDist(probs=probs).sample()
else:
return torch.clip(torchd.normal.Normal(action, amount).sample(), -1, 1)
raise NotImplementedError(self._config.action_noise)
def _train(self, data):
metrics = {}
post, context, mets = self._wm._train(data)
metrics.update(mets)
start = post
# start['deter'] (16, 64, 512)
reward = lambda f, s, a: self._wm.heads["reward"](
self._wm.dynamics.get_feat(s)
).mode()
metrics.update(self._task_behavior._train(start, reward)[-1])
if self._config.expl_behavior != "greedy":
mets = self._expl_behavior.train(start, context, data)[-1]
metrics.update({"expl_" + key: value for key, value in mets.items()})
for name, value in metrics.items():
if not name in self._metrics.keys():
self._metrics[name] = [value]
else:
self._metrics[name].append(value)
def count_steps(folder):
return sum(int(str(n).split("-")[-1][:-4]) - 1 for n in folder.glob("*.npz"))
def make_dataset(episodes, config):
generator = tools.sample_episodes(episodes, config.batch_length)
dataset = tools.from_generator(generator, config.batch_size)
return dataset
def make_env(config, logger, mode, train_eps, eval_eps, settings):
suite, task = config.task.split("_", 1)
if suite == "carla":
import envs.carla_wrapper as carla
env = carla.Carla(
settings.world,
settings,
host='tks-hazard.fzi.de',
port=2000,
action_repeat=config.action_repeat,
size=config.size,
grayscale=config.grayscale,
done=False
)
# env = wrappers.NormalizeActions(env)
env = wrappers.OneHotAction(env)
else:
raise NotImplementedError(suite)
env = wrappers.TimeLimit(env, config.time_limit)
env = wrappers.SelectAction(env, key="action")
if (mode == "train") or (mode == "eval"):
callbacks = [
functools.partial(
ProcessEpisodeWrap.process_episode,
config,
logger,
mode,
train_eps,
eval_eps,
)
]
env = wrappers.CollectDataset(env, mode, train_eps, callbacks=callbacks)
env = wrappers.RewardObs(env)
return env
class ProcessEpisodeWrap:
eval_scores = []
eval_lengths = []
eval_arrive_inds = []
eval_rule_scores = []
last_step_at_eval = -1
eval_episode_num = 1
eval_done = False
@classmethod
def process_episode(cls, config, logger, mode, train_eps, eval_eps, episode, camera_ls, rule_paras, anomaly):
directory = dict(train=config.traindir, eval=config.evaldir)[mode]
cache = dict(train=train_eps, eval=eval_eps)[mode]
# this saved episodes is given as train_eps or eval_eps from next call
filename = tools.save_episodes(directory, [episode])[0]
length = len(episode["reward"]) - 1
score = float(episode["reward"].astype(np.float64).sum())
arrived_ind = episode["arrived_s"][-1]
rule_score = episode["rule_score"][-1]
finished_score = episode["finished_score"][-1]
# video = episode["image"]
video = camera_ls
cache[str(filename)] = episode
if mode == "train":
total = 0
for key, ep in reversed(sorted(cache.items(), key=lambda x: x[0])):
if not config.dataset_size or total <= config.dataset_size - length:
total += len(ep["reward"]) - 1
else:
del cache[key]
# logger.scalar("dataset_size", total, len(cache))
# logger.image(f"{mode}_rule_graph", rule_graph)
logger.scalar(f"{mode}_return", score)
logger.scalar(f"{mode}_length", length)
logger.scalar(f"{mode}_arrived_s", arrived_ind)
logger.scalar(f"{mode}_rule_score", rule_score)
logger.scalar(f"{mode}_finished_score", finished_score)
# logger.video(f"{mode}_policy", video[None])
logger.scalar(
f"{mode}_episodes", len(cache)
)
# use dataset_size as log step for a condition of envs > 1
log_step = total * config.action_repeat
log_episode = len(cache)
elif mode == "eval":
# keep only last item for saving memory
while len(cache) > 1:
# FIFO
cache.popitem()
# start counting scores for evaluation
if cls.last_step_at_eval != logger.step:
cls.eval_scores = []
cls.eval_lengths = []
cls.eval_arrive_inds = []
cls.eval_rule_scores = []
cls.eval_finished_score = []
cls.eval_done = False
cls.last_step_at_eval = logger.step
cls.eval_scores.append(score)
cls.eval_lengths.append(length)
cls.eval_arrive_inds.append(arrived_ind)
cls.eval_rule_scores.append(rule_score)
cls.eval_finished_score.append(finished_score)
# ignore if number of eval episodes exceeds eval_episode_num
if len(cls.eval_scores) < config.eval_episode_num or cls.eval_done:
return
score_2 = {'score': score,
'avg_score': sum(cls.eval_scores) / len(cls.eval_scores)}
length_2 = {'length': length,
'avg_length': sum(cls.eval_lengths) / len(cls.eval_lengths)}
arrived_ind_2 = {'arrived_s': arrived_ind,
'avg_arrived_ind:': sum(cls.eval_arrive_inds) / len(cls.eval_arrive_inds)}
rule_score_2 = {'rule_score': rule_score,
'avg_rule_score': sum(cls.eval_rule_scores) / len(cls.eval_rule_scores)}
score = sum(cls.eval_scores) / len(cls.eval_scores)
length = sum(cls.eval_lengths) / len(cls.eval_lengths)
arrived_ind = sum(cls.eval_arrive_inds) / len(cls.eval_arrive_inds)
rule_score = sum(cls.eval_rule_scores) / len(cls.eval_rule_scores)
finished_score = sum(cls.eval_finished_score) / len(cls.eval_finished_score)
episode_num = len(cls.eval_scores) * cls.eval_episode_num
instance = cls()
rule_graph = instance.rule_graph(rule_paras, anomaly, arrived_ind)
log_step = logger.step
logger.video(f"{mode}_policy", video[None])
logger.image(f"{mode}_rule_graph", rule_graph)
logger.scalar(f"{mode}_return", score)
logger.scalar(f"{mode}_length", length)
logger.scalar(f"{mode}_arrived_s", arrived_ind)
logger.scalar(f"{mode}_rule_score", rule_score)
logger.scalar(
f"{mode}_episodes", episode_num
)
logger.scalar(f"{mode}_finished_score", finished_score)
cls.eval_episode_num += 1
cls.eval_done = True
print(f"{mode.title()} episode has {length} steps and return {score:.1f}.")
logger.write(step=log_step)
def rule_graph(self, rule_paras, anomaly, arrived_ind):
r_ls = [pos[0] for pos in rule_paras]
s_ls = [pos[1] for pos in rule_paras]
d_ls = [pos[2] for pos in rule_paras]
length = int(round(s_ls[-1]))
max_s = int(round(anomaly[2]))
t1 = np.arange(0, max_s)
t2 = np.arange(0, length)
l1 = np.full(max_s, -1.75)
l2 = np.full(max_s, 1.75)
l3 = np.full(max_s, 5.25)
lane_keep = np.zeros(length)
no_out = np.zeros(length)
no_collision = np.zeros(length)
r_ls = [pos[0] for pos in rule_paras]
s_ls = [pos[1] for pos in rule_paras]
d_ls = [pos[2] for pos in rule_paras]
fig, (ax2, ax3, ax4, ax1) = plt.subplots(4, 1, sharex=True, dpi=300)
ax1.plot(s_ls, d_ls, 'b-')
ax1.plot(t1, l1, 'g')
ax1.plot(t1, l2, 'g--')
ax1.plot(t1, l3, 'g')
ax1.plot(anomaly[0], anomaly[1], 'r*')
ax1.plot(anomaly[0]-10, anomaly[1], 'r^')
ax1.plot(anomaly[0]+10, anomaly[1], 'r^')
for pos in rule_paras:
index = int(round(pos[1]))
if index < length - 3:
lane_keep[index:index+2] = 1
no_out[index:index+2] = 1
no_collision[index:index+2] = 1
if pos[2] > 1.75:
lane_keep[index:index+2] = 1 - (np.fabs(pos[2]) - 1.75) / 3.5
if pos[2] < -1.75:
no_out[index:index+2] = 1 - (np.fabs(pos[2]) - 1.75) / 3.5
if pos[2] > 5.25:
no_out[index:index+2] = 1 - (np.fabs(pos[2]) - 5.25) / 3.5
ax2.plot(t2, lane_keep, 'c', label='Lane keep')
ax2.legend(loc="upper right")
ax3.plot(t2, no_out, 'g', label='No out road')
ax3.legend(loc="upper right")
ax4.plot(t2, no_collision, 'b', label='No collision')
ax4.legend(loc="upper right")
ax2.set_title("Rules Graph")
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
image = PIL.Image.open(buf)
image = ToTensor()(image).unsqueeze(0)
image = image[0]
return image
def load_settings(path):
with open(path+'/scenario_set_2.json') as json_file:
settings = json.load(json_file)
# convert to a dictionary that supports attribute-style access, a la JavaScript
settings = DefaultMunch.fromDict(settings)
folder_name = path.split("/")[-1]
if folder_name == "": folder_name = path.split("/")[-2]
print(f"~~~~\n# Scenario set: {folder_name} \n# Contains {settings.size} scenarios among world: {settings.world} \n~~~~")
return settings
def main(config):
Task.add_requirements(package_name="gym",
package_version="",)
Task.add_requirements(package_name="scikit-image",
package_version="",)
Task.add_requirements(package_name="moviepy",
package_version="",)
Task.add_requirements(package_name="mkl",
package_version="",)
task = Task.init(project_name="bogdoll/rl_traffic_rule_Jing",
task_name="google_dreamer_v3_carla",
reuse_last_task_id=False,
tags="Dreamer_test_5",
output_uri="s3://tks-zx.fzi.de:9000/clearml")
task.set_base_docker(
"nvcr.io/nvidia/pytorch:22.12-py3",
docker_setup_bash_script="apt-get update && apt-get install -y python3-opencv",
docker_arguments="-e NVIDIA_DRIVER_CAPABILITIES=all --network=host" # --ipc=host",
)
# task.execute_remotely('docker', clone=False, exit_process=True)
# Use Moritz scenario settings
# path = Dataset.get(dataset_id=PATH_SCENARIO).get_local_copy()
path = PATH_SCENARIO_DIR
settings = settings = load_settings(path)
# Get base model
base_model = InputModel(model_id=PATH_MODEL).get_local_copy(raise_on_error=True)
print("base model: ", base_model)
logdir = pathlib.Path(config.logdir).expanduser()
config.traindir = config.traindir or logdir / "train_eps"
config.evaldir = config.evaldir or logdir / "eval_eps"
config.steps //= config.action_repeat
config.eval_every //= config.action_repeat
config.log_every //= config.action_repeat
config.time_limit //= config.action_repeat
print("Logdir", logdir)
logdir.mkdir(parents=True, exist_ok=True)
config.traindir.mkdir(parents=True, exist_ok=True)
config.evaldir.mkdir(parents=True, exist_ok=True)
step = count_steps(config.traindir)
logger = tools.Logger(logdir, config.action_repeat * step)
print("Create envs.")
if config.offline_traindir:
directory = config.offline_traindir.format(**vars(config))
else:
directory = config.traindir
train_eps = tools.load_episodes(directory, limit=config.dataset_size)
if config.offline_evaldir:
directory = config.offline_evaldir.format(**vars(config))
else:
directory = config.evaldir
eval_eps = tools.load_episodes(directory, limit=1)
make = lambda mode: make_env(config, logger, mode, train_eps, eval_eps, settings)
train_envs = [make("train") for _ in range(config.envs)]
eval_envs = [make("eval") for _ in range(config.envs)]
acts = train_envs[0].action_space
config.num_actions = acts.n if hasattr(acts, "n") else acts.shape[0]
if not config.offline_traindir:
prefill = max(0, config.prefill - count_steps(config.traindir))
print(f"Prefill dataset ({prefill} steps).")
if hasattr(acts, "discrete"):
random_actor = tools.OneHotDist(
torch.zeros(config.num_actions).repeat(config.envs, 1)
)
else:
random_actor = torchd.independent.Independent(
torchd.uniform.Uniform(
torch.Tensor(acts.low).repeat(config.envs, 1),
torch.Tensor(acts.high).repeat(config.envs, 1),
),
1,
)
def random_agent(o, d, s, r):
action = random_actor.sample()
logprob = random_actor.log_prob(action)
return {"action": action, "logprob": logprob}, None
tools.simulate(random_agent, train_envs, prefill)
logger.step = config.action_repeat * count_steps(config.traindir)
print("Simulate agent.")
train_dataset = make_dataset(train_eps, config)
eval_dataset = make_dataset(eval_eps, config)
agent = Dreamer(
train_envs[0].observation_space,
train_envs[0].action_space,
config,
logger,
train_dataset,
).to(config.device)
agent.requires_grad_(requires_grad=False)
if base_model:
agent.load_state_dict(torch.load(base_model))
agent._should_pretrain._once = False
state = None
while agent._step < config.steps:
logger.write()
print("Start evaluation.")
eval_policy = functools.partial(agent, training=False)
tools.simulate(eval_policy, eval_envs, episodes=config.eval_episode_num)
if config.video_pred_log:
video_pred = agent._wm.video_pred(next(eval_dataset))
# logger.video("eval_openl", to_np(video_pred))
print("Start training.")
state = tools.simulate(agent, train_envs, config.eval_every, state=state)
torch.save(agent.state_dict(), "latest_model.pt")
for env in train_envs + eval_envs:
try:
env.close()
except Exception:
pass
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--configs", nargs="+")
args, remaining = parser.parse_known_args()
configs = yaml.safe_load(
(pathlib.Path(sys.argv[0]).parent / "configs.yaml").read_text()
)
def recursive_update(base, update):
for key, value in update.items():
if isinstance(value, dict) and key in base:
recursive_update(base[key], value)
else:
base[key] = value
name_list = ["defaults", *args.configs] if args.configs else ["defaults"]
defaults = {}
for name in name_list:
recursive_update(defaults, configs[name])
parser = argparse.ArgumentParser()
for key, value in sorted(defaults.items(), key=lambda x: x[0]):
arg_type = tools.args_type(value)
parser.add_argument(f"--{key}", type=arg_type, default=arg_type(value))
main(parser.parse_args(remaining))