-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathafc_graph.c
1351 lines (1289 loc) · 34.7 KB
/
afc_graph.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) <2012> <Leif Asbrink>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
#include "osnum.h"
#include "globdef.h"
#include "uidef.h"
#include "fft1def.h"
#include "fft2def.h"
#include "screendef.h"
#include "vernr.h"
#include "seldef.h"
#include "llsqdef.h"
#include "sigdef.h"
#include "thrdef.h"
#if OSNUM == OSNUM_WINDOWS
#include "wscreen.h"
#endif
#if OSNUM == OSNUM_LINUX
#include "lscreen.h"
#endif
#define FT 0.000001
#define AG_STON_RANGE 1.5 //=15dB
#define AG_CHARS 24
// Global pointers for AFC
// ag_ss Current signal ( 0 is signal to loudspeaker)
// agp0 Pointer to ag_....[0] for current signal
// mix1p0 Pointer to mix1_...[0] for current signal
// fftx_na Latest available fftx block
// fftx_nx Latest unused fftx block
// Frequency at start of block is mix1_fq_start (set by mix1)
// Frequency af block midpoint is mix1_fq_mid (set here and by mix1)
// fftx_nc Old value for fftx_na (from previous afc call)
// fftx_ny Latest fftx_block for which data is stored in ag_mix1freq[]
// mix1 arrays:
// mix1_fq_mid frequency to use by mix1 (at midpoint of block)
// mix1_fq_start frequency to use by mix1 (at beginning of block)
// mix1_fq_slope frequency change, set and used by mix1
// mix1_fq_curv frequency change, 2nd order, set and used by mix1
// mix1_eval_avgn No of fftx blocks used to calculate eval data
// mix1_eval_fq A maximum is found at this frequency (if positive)
// mix1_eval_ampl Signal power at eval_fq
// mix1_eval_noise Noise around fq
int afc_graph_scro;
int ag_old_y1;
int ag_old_y2;
int ag_old_x1;
int ag_old_x2;
int new_ag_mode_control;
void make_afc_graph(int clear_old);
int afc_fit_line(void)
{
int i,j,k, np;
float t1, t2, wfq, ston_avgsumsq, r1, r2;
// Make an S/N weighted least squares fit of a straight line
// to mix1_eval_fq from fftx_nf1 to fftx_nf2.
// First store weights ( S/N ) in afc_spectrum which can
// be used as scratch area.
afc_slope=0;
t1=0;
ston_avgsumsq=0;
k=0;
j=0;
np=fftx_nf1;
while(np != fftx_nf2)
{
afc_spectrum[j]=(mix1_eval_sigpwr[mix1p0+np]-mix1_eval_noise[mix1p0+np])/
mix1_eval_noise[mix1p0+np];
if( afc_spectrum[j] > 0)
{
t1+=afc_spectrum[j];
ston_avgsumsq+=afc_spectrum[j]*afc_spectrum[j];
k++;
}
else
{
afc_spectrum[j]=0;
}
j++;
np=(np+1)&fftxn_mask;
}
if(k==0)return 0;
ston_avgsumsq/=(float)k;
// ston_avgsumsq is average of S/N ratio squared.
// If RMS value of S/N is below ag.minston the data is no good so there
// is no reason to try to fit any line to the points.
if(ston_avgsumsq < ag.minston) return 0;
t1/=(float)k;
// Exclude points that contribute with less than 10% of the average
// contribution.
// Get the S/N weighted average frequency into wfq
t1*=.1F;
t2=0;
wfq=0;
np=fftx_nf1;
for(i=0; i<ag.fit_points; i++)
{
if(afc_spectrum[i] > t1)
{
t2+=afc_spectrum[i];
wfq+=afc_spectrum[i]*mix1_eval_fq[mix1p0+np];
}
np=(np+1)&fftxn_mask;
}
if(t2==0)return 0;
wfq/=t2;
// wfq is the S/N weighted center frequency.
// Count how many points remain when we skip points that are clearly
// not compatible with a reasonable frequency drift.
t2=0.5F*(float)(ag.fit_points*(afc_speknum+1))*afc_drift_step/fftx_points_per_hz;
llsq_neq=0;
np=fftx_nf1;
for(i=0; i<ag.fit_points; i++)
{
if(afc_spectrum[i] > t1)
{
if(fabs(wfq-mix1_eval_fq[mix1p0+np]) < t2)
{
llsq_neq++;
}
}
np=(np+1)&fftxn_mask;
}
// If we have less than 4 points, do not fit any line, just use average.
if(ag.fit_points < 4 || llsq_neq < 2)goto use_average;
llsq_derivatives=(float*)((char*)(afc_spectrum)+
(((unsigned int)ag.fit_points*sizeof(float)+15)&0xfffffff0));
llsq_errors=llsq_derivatives+
((2*(unsigned int)llsq_neq*sizeof(float)+15)&0xfffffff0);
llsq_npar=2;
k=0;
np=fftx_nf1;
for(i=0; i<ag.fit_points; i++)
{
if(afc_spectrum[i] > t1)
{
if(fabs(wfq-mix1_eval_fq[mix1p0+np]) < t2)
{
llsq_derivatives[k]=afc_spectrum[i];
llsq_derivatives[llsq_neq+k]=(float)i*afc_spectrum[i];
llsq_errors[k]=afc_spectrum[i]*mix1_eval_fq[mix1p0+np];
k++;
}
}
np=(np+1)&fftxn_mask;
}
if(llsq1() != 0)
{
lirerr(32330);
return 0;
}
// Store the straight line we got into mix1_fitted_fq.
// Calculate S/N weighted sum of squares for frequency error
// Also calculate under assumption we adopted the average frequency wfq.
t1=0;
t2=0;
r2=0;
np=fftx_nf1;
afc_slope=llsq_steps[1];
for(i=0; i<ag.fit_points; i++)
{
r1=llsq_steps[0]+llsq_steps[1]*(float)i;
if(r1 < mix1_lowest_fq)r1=mix1_lowest_fq;
if(r1 > mix1_highest_fq)r1=mix1_highest_fq;
mix1_fitted_fq[mix1p0+np]=r1;
t1+=(float)pow((r1-mix1_eval_fq[mix1p0+np]),2.0)*afc_spectrum[i];
t2+=(float)pow((wfq-mix1_eval_fq[mix1p0+np]),2.0)*afc_spectrum[i];
r2+=(float)pow((mix1_good_freq[ag_ss]-mix1_eval_fq[mix1p0+np]),2.0)*afc_spectrum[i];
np=(np+1)&fftxn_mask;
}
// t1, t2 and r2 are sums of squared errors.
// for reasonably good data t1<t2<r2.
// If the slope does not really help, just use a constant frequency.
if(t1/t2 > 0.7)
{
use_average:;
afc_slope=0;
if(wfq < mix1_lowest_fq)wfq=mix1_lowest_fq;
if(wfq > mix1_highest_fq)wfq=mix1_highest_fq;
np=fftx_nf1;
for(i=0; i<ag.fit_points; i++)
{
mix1_fitted_fq[mix1p0+np]=wfq;
np=(np+1)&fftxn_mask;
}
}
return 1;
}
void afc_eval_line(float wid)
{
int i, np, retcod,p_nf1,p_nf2,pb;
int no_of_points;
float t1,t2;
pb=ag_pf1;
while(pb != ag_pf2)
{
ag_fitted_fq[pb]=-1;
pb=(pb+1)&ag_mask;
}
// The data in the mix1_eval arrays is obtained under the assumption
// that the extrapolated data in mix1_fq is essentially correct.
// Fit a line to the data in mix1_eval and use it to update the
// data in mix1_fq if the fit is reasonably good.
// Make mix1_fq constant in case the fit is poor.
// First update afct_avgnum according to current afc_maxval and afc_noise
// Make no_of_points=sqrt(w*w+5*5) toget something going from minimum 5 to
// search width in a smooth way.
t1=wid*(float)baseband_bw_fftxpts;
if( t1 > afcf_search_range/2)
{
t1=afcf_search_range/2;
}
t1=sqrt(t1*t1+25.F);
no_of_points=(int)t1;
if(ag.mode_control == 1)make_afct_avgnum();
// Step through the currently available mix1_eval data and
// check if it is already present with the correct afct_avgnum.
// Call make_ag_point if not.
fftx_nf2=(fftx_na-afct_half_avgnum+max_fftxn)&fftxn_mask;
fftx_nf1=(fftx_nf2-ag.fit_points+max_fftxn)&fftxn_mask;
p_nf1=(ag_pa-((fftx_na-fftx_nf1+max_fftxn)&fftxn_mask)+ag_size)&ag_mask;
ag_ps=p_nf1;
p_nf2=(p_nf1+ag.fit_points)&ag_mask;
ag_pf1=p_nf1;
ag_pf2=p_nf2;
np=fftx_nf1;
while(np != fftx_nf2)
{
if(mix1_eval_avgn[mix1p0+np]!=afct_avgnum || mix1_eval_sigpwr[mix1p0+np] <0)
{
make_ag_point(np,no_of_points);
if(kill_all_flag) return;
}
np=(np+1)&fftxn_mask;
}
// Make an S/N weighted least squares fit of a straight line
// to the frequency from fftx_nf1 to fftx_nf2.
if(afc_fit_line() == 0)
{
retcod=0;
}
else
{
retcod=1;
}
if(kill_all_flag) return;
// The first mixer has already used the points fftx_ny to fftx_nx-1
// Fill in what we already did in ag_mix1freq
// fftx_na corresponds to ag_pa.
if(fftx_nx != fftx_ny)
{
i=(ag_pa-((fftx_na-fftx_ny+max_fftxn)&fftxn_mask)+ag_size)&ag_mask;
while(fftx_ny != fftx_nx)
{
ag_mix1freq[i]=mix1_fq_mid[mix1p0+fftx_ny];
fftx_ny=(fftx_ny+1)&fftxn_mask;
i=(i+1)&ag_mask;
}
// We will write on screen up to ag_pa. Clear data!
while(i != ag_pa)
{
ag_mix1freq[i]=-1;
i=(i+1)&ag_mask;
}
}
// Store the new fitted line in ag_fitted_fq
// Set new_redraw to point to the first value, we want to remember
// in order to clear the point next time.
// fftx_na corresponds to ag_pa.
np=fftx_nf1;
pb=p_nf1;
if(retcod != 0)
{
while(np != fftx_nf2)
{
ag_fitted_fq[pb]=mix1_fitted_fq[mix1p0+np];
ag_freq[pb]=mix1_eval_fq[mix1p0+np];
if(mix1_eval_sigpwr[mix1p0+np] > 0)
{
ag_ston[pb]=(float)log10(mix1_eval_sigpwr[mix1p0+np]/mix1_eval_noise[mix1p0+np]);
}
else
{
ag_ston[pb]=0;
}
pb=(pb+1)&ag_mask;
np=(np+1)&fftxn_mask;
}
}
else
{
while(np != fftx_nf2)
{
mix1_fitted_fq[mix1p0+np]=mix1_good_freq[ag_ss];
ag_freq[pb]=mix1_eval_fq[mix1p0+np];
pb=(pb+1)&ag_mask;
np=(np+1)&fftxn_mask;
}
}
i=(ag_pa+4)&ag_mask;
while(pb != i)
{
ag_freq[pb]=-1;
ag_ston[pb]=0;
pb=(pb+1)&ag_mask;
}
// mix1_fitted_fq contains a frequency that is drifting linearly with
// time, with the slope afc_slope.
// The mixer already used points up to fftx_nx-1 so it is to late to
// do anything with them.
// Fill mix1_fq_mid from fftx_nx to fftx_na by use of the
// data in mix1_fitted_fq.
np=(fftx_nf2-1+max_fftxn)&fftxn_mask;
t2=mix1_fitted_fq[mix1p0+np];
i=(fftx_nx-np+fftxn_mask)&fftxn_mask;
if(i > (max_fftxn>>2))i-=max_fftxn;
t2+=((float)i-0.5F)*afc_slope;
np=(fftx_nx+fftxn_mask)&fftxn_mask;
while(np != fftx_na)
{
t2+=afc_slope;
np=(np+1)&fftxn_mask;
if(t2 < mix1_lowest_fq)t2=mix1_lowest_fq;
if(t2 > mix1_highest_fq)t2=mix1_highest_fq;
mix1_fq_mid[mix1p0+np]=t2;
}
// We have now set up a frequency function for the AFC.
// Display it on screen if it is the main signal (for the loudspeaker).
}
void make_afc(void)
{
int i, np, kk;
float t1, current_selfreq;
if(old_mix1_selfreq != mix1_selfreq[0])
{
baseb_reset_counter++;
return;
}
// Find a signal.
// Or follow a signal on which we already are locked.
// Depending on mix1_status:
// status=0 => first call. Everything unknown.
// status=1 => a frequency is set but no signal was really detected.
// status=2 => Signal detected. Frequency with linear drift stored.
// status=3 => Signal tracking seems ok.
// status=4 => Signal lost, using constant frequency
if(genparm[SECOND_FFT_ENABLE] != 0)
{
fftx_na=fft2_na;
fftx_nc=fft2_nc;
fftx_nm=fft2_nm;
fftx_nx=fft2_nx;
}
else
{
fftx_na=fft1_nb;
fftx_nc=fft1_nc;
fftx_nm=fft1_nm;
fftx_nx=fft1_nx;
}
for(ag_ss=0; ag_ss<genparm[MIX1_NO_OF_CHANNELS]; ag_ss++)
{
current_selfreq=mix1_selfreq[ag_ss];
if(current_selfreq >= 0)
{
mix1p0=ag_ss*max_fftxn;
// ****************************************************
// If AFC is disabled, stay at a constant frequency.
if(ag.mode_control == 0)
{
if(mix1_status[ag_ss] == 1000)goto skip;
if(mix1_status[ag_ss] == 0)
{
t1=current_selfreq;
mix1_good_freq[ag_ss]=current_selfreq;
}
else
{
t1=mix1_good_freq[ag_ss];
}
for(np=0; np<max_fftxn; np++)
{
mix1_fq_mid[mix1p0+np]=t1;
}
afc_cursor_color=14;
mix1_status[ag_ss]=1000;
goto skip;
}
// *******************************************************
// Set mix1_eval_avgn to -1 so we know evaluation data is
// not valid for new data points.
// Set mix1_eval_sigpwr to -1 so we do not have to test flag when inconvenient.
np=fftx_nc;
while( np != fftx_na )
{
mix1_eval_avgn[mix1p0+np]=-1;
mix1_eval_sigpwr[mix1p0+np]=-1;
np=(np+1)&fftxn_mask;
}
switch (mix1_status[ag_ss])
{
case 0:
afc_graph_filled=0;
afc_cursor_color=14;
// The user has selected a signal.
// Try to find a signal and store frequencies in mix1_fq_mid[]
collect_initial_spectrum();
// The mixer wants to know some data from the previous transform
// in order to produce a continous phase
np=(fftx_nx+fftxn_mask)&fftxn_mask;
t1=mix1_fq_mid[mix1p0+np];
mix1_fq_start[mix1p0+fftx_nx]=0.5F*(t1+mix1_fq_mid[mix1p0+fftx_nx]);
t1*=fftx_points_per_hz;
kk=(int)(t1+0.5F);
mix1_good_freq[ag_ss]=mix1_fq_start[mix1p0+fftx_nx];
mix1_point[ag_ss]=kk;
mix1_phase[ag_ss]=0;
mix1_phase_step[ag_ss]=0;
ag_pa=afc_tpts;
ag_px=0;
fftx_ny=fftx_nx;
// Set mix1_eval_avgn to -1 so we know evaluation data is not valid
// Set mix1_eval_sigpwr to -1 so we do not have to test flag when inconvenient.
for(i=0; i<max_fftxn; i++)
{
mix1_eval_avgn[mix1p0+i]=-1;
mix1_eval_sigpwr[mix1p0+i]=-1;
}
for(i=0; i<ag_size; i++)
{
ag_fitted_fq[i] = -1;
ag_freq[i]=-1;
ag_ston[i]=0;
}
break;
case 1:
// A frequency is set but the signal may be elsewhere.
// We can not afford a complete search each time arriving here,
// and it would not be very helpful either.
// For weak signals averaging is done over many transforms so
// just one more will not help.
// If the signal is readable we will easily find it without
// searching over all possible frequency drifts unless it is
// terribly unstable in which case the operator will have to
// press the button again to initiate a new search.
// öö simple search routine missing!!!!!!!!!!
np=fftx_nc;
t1=mix1_fq_mid[mix1p0+np];
while(np != fftx_na)
{
np=(np+1)&fftxn_mask;
mix1_fq_mid[mix1p0+np]=t1;
}
mix1_good_freq[ag_ss]=t1;
break;
case 2:
// If we arrive here, the first search was sucessful.
// In case we are in manual mode we want a fixed number of points
// to average over.
if(ag.mode_control != 2)
{
// In auto mode, force evaluation of S/N and a new eval size
// by setting an impossible afct_avgnum.
afct_avgnum=-1;
}
afc_eval_line(0.5);
mix1_status[ag_ss]=3;
afc_cursor_color=10;
afc_graph_filled=1;
sc[SC_FILL_AFC]++;
goto cs3;
case 3:
// Step through recent points and get the average noise levels from
// valid points only.
if(make_afc_signoi()==0 && ag.mode_control != 2)
{
afc_cursor_color=9;
mix1_status[ag_ss]=4;
}
else
{
afc_eval_line(0.5);
cs3:;
if(ag.mode_control != 2)
{
mix1_status[ag_ss]=4;
afc_cursor_color=9;
}
goto skip;
}
break;
case 4:
// We have lost the signal when following at narrow search range.
// Set the maximum value for afct_avgnum (by forcing S/N=0).
afc_maxval=1;
afc_noise=1;
// Now search a wider range.
// 2.5 times the selected bandwidth or half the search range
afc_eval_line(2.5);
mix1_status[ag_ss]=4;
afc_cursor_color=9;
goto skip;
case 5:
// We have lost the signal.
break;
case 1000:
// AFC was deselected and is now enabled again.
if(mix1_selfreq[ag_ss] > 0)
{
mix1_status[ag_ss]=0;
mix1_selfreq[ag_ss]=mix1_good_freq[ag_ss];
}
break;
default:
lirerr(889962);
return;
}
}
}
skip:;
if(mix1_selfreq[0] > 0 && genparm[SECOND_FFT_ENABLE] != 0)
{
sc[SC_AFC_CURSOR]++;
}
fft2_nc=(fft2_nc+1+max_fft2n)&fft2n_mask;
fft1_nc=(fft1_nc+1+max_fft1n)&fft1n_mask;
}
void new_afc_graph(void)
{
make_afc_graph(TRUE);
sc[SC_FILL_AFC]++;
}
void check_afct_points(void)
{
if(ag.fit_points > max_afc_fit)ag.fit_points = max_afc_fit;
if(ag.fit_points > max_fftxn-afct_avgnum+1)
ag.fit_points = max_fftxn-afct_avgnum+1;
if(ag.fit_points < 1)ag.fit_points=1;
afct_delay_points=afct_half_avgnum+ag.fit_points/2;
if(ag.delay > afct_delay_points)ag.delay=afct_delay_points;
if(ag.delay < 0)ag.delay=0;
if(afct_delay_points > ag.delay)afct_delay_points=ag.delay;
if(new_baseb_flag >= 0 && afct_delay_points != old_afct_delay)baseb_reset_counter++;
afc_tpts=ag.fit_points+afct_half_avgnum;
}
void new_afc_avgnum(void)
{
ag.avgnum=numinput_int_data;
// Make sure to write to screen so user knows it is ok.
afct_avgnum=0;
make_afct_window(ag.avgnum);
if(kill_all_flag) return;
ag.avgnum=afct_avgnum;
check_afct_points();
make_modepar_file(GRAPHTYPE_AG);
}
void new_afc_fit_points(void)
{
ag.fit_points=numinput_int_data;
check_afct_points();
new_afc_graph();
}
void new_afc_delay(void)
{
ag.delay=numinput_int_data;
check_afct_points();
new_afc_graph();
}
void help_on_afc_graph(void)
{
int msg_no;
int event_no;
// Nothing is selected in the data area.
msg_no=-1;
// In case we are on one of the control bars, select the
// appropriate message.
if(mouse_y <= ag_fpar_y0 && mouse_y >= ag_fpar_ytop)
{
if( mouse_x<ag_first_xpixel)
{
if(mouse_x >= ag_ston_x1 && mouse_x <= ag_ston_x2)
{
if(genparm[SECOND_FFT_ENABLE] == 0)
{
msg_no=21;
}
else
{
msg_no=22;
}
}
else
{
if(mouse_x >= ag_lock_x1 && mouse_x <= ag_lock_x2)
{
msg_no=23;
}
else
{
if(mouse_x >= ag_srch_x1 && mouse_x <= ag_srch_x2)
{
msg_no=24;
}
}
}
}
}
for(event_no=0; event_no<MAX_AGBUTT; event_no++)
{
if( agbutt[event_no].x1 <= mouse_x &&
agbutt[event_no].x2 >= mouse_x &&
agbutt[event_no].y1 <= mouse_y &&
agbutt[event_no].y2 >= mouse_y)
{
switch (event_no)
{
case AG_TOP:
case AG_BOTTOM:
case AG_LEFT:
case AG_RIGHT:
msg_no=100;
break;
case AG_FQSCALE_EXPAND:
msg_no=25;
break;
case AG_FQSCALE_CONTRACT:
msg_no=26;
break;
case AG_MANAUTO:
msg_no=27;
break;
case AG_WINTOGGLE:
msg_no=28;
break;
case AG_SEL_AVGNUM:
if(genparm[SECOND_FFT_ENABLE] == 0)
{
msg_no=29;
}
else
{
msg_no=30;
}
break;
case AG_SEL_DELAY:
msg_no=31;
break;
case AG_SEL_FIT:
msg_no=32;
break;
}
}
}
help_message(msg_no);
}
void mouse_continue_afc_graph(void)
{
char s[80];
int j;
switch (mouse_active_flag-1)
{
case AG_TOP:
if(ag.ytop!=mouse_y)
{
pause_screen_and_hide_mouse();
graph_borders((void*)&ag,0);
ag.ytop=mouse_y;
j=ag.ybottom-2*text_height;
if(ag.ytop > j)ag.ytop=j;
if(ag_old_y1 > ag.ytop)ag_old_y1=ag.ytop;
graph_borders((void*)&ag,15);
resume_thread(THREAD_SCREEN);
}
break;
case AG_BOTTOM:
if(ag.ybottom!=mouse_y)
{
pause_screen_and_hide_mouse();
graph_borders((void*)&ag,0);
ag.ybottom=mouse_y;
j=ag.ytop+2*text_height;
if(ag.ybottom < j)ag.ybottom=j;
if(ag_old_y2 < ag.ybottom)ag_old_y2=ag.ybottom;
graph_borders((void*)&ag,15);
resume_thread(THREAD_SCREEN);
}
break;
case AG_LEFT:
if(ag.xleft!=mouse_x)
{
pause_screen_and_hide_mouse();
graph_borders((void*)&ag,0);
ag.xleft=mouse_x;
j=ag.xright-32-6*text_width;
if(ag.xleft > j)ag.xleft=j;
if(ag_old_x1 > ag.xleft)ag_old_x1=ag.xleft;
graph_borders((void*)&ag,15);
resume_thread(THREAD_SCREEN);
}
break;
case AG_RIGHT:
if(ag.xright!=mouse_x)
{
pause_screen_and_hide_mouse();
graph_borders((void*)&ag,0);
ag.xright=mouse_x;
j=ag.xleft+32+6*text_width;
if(ag.xright < j)ag.xright=j;
if(ag_old_x2 < ag.xright)ag_old_x2=ag.xright;
graph_borders((void*)&ag,15);
resume_thread(THREAD_SCREEN);
}
break;
default:
goto await_release;
}
if(leftpressed == BUTTON_RELEASED)goto finish;
return;
await_release:;
if(leftpressed != BUTTON_RELEASED) return;
switch (mouse_active_flag-1)
{
case AG_FQSCALE_EXPAND:
ag.frange/=2;
if(ag.frange < (float)AG_FRANGE_MIN)ag.frange = (float)AG_FRANGE_MIN;
break;
case AG_FQSCALE_CONTRACT:
ag.frange*=1.6F;
if(ag.frange > (float)AG_FRANGE_MAX)ag.frange = (float)AG_FRANGE_MAX;
break;
case AG_MANAUTO:
new_ag_mode_control=ag.mode_control+1;
break;
case AG_WINTOGGLE:
ag.window^=1;
if(ag.window == 1) s[0]='W'; else s[0]='-';
s[1]=0;
lir_pixwrite(agbutt[AG_WINTOGGLE].x1+text_width/2-1,
agbutt[AG_WINTOGGLE].y1+2,s);
make_afct_window(afct_avgnum);
break;
case AG_SEL_AVGNUM:
if(ag.mode_control == 2)
{
mouse_active_flag=1;
numinput_xpix=agbutt[AG_SEL_AVGNUM].x1+7*text_width/2-1;
numinput_ypix=agbutt[AG_SEL_AVGNUM].y1+2;
numinput_chars=3;
erase_numinput_txt();
numinput_flag=FIXED_INT_PARM;
par_from_keyboard_routine=new_afc_avgnum;
return;
}
break;
case AG_SEL_DELAY:
if(ag.mode_control == 2)
{
mouse_active_flag=1;
numinput_xpix=agbutt[AG_SEL_DELAY].x1+7*text_width/2-1;
numinput_ypix=agbutt[AG_SEL_DELAY].y1+2;
numinput_chars=3;
erase_numinput_txt();
numinput_flag=FIXED_INT_PARM;
par_from_keyboard_routine=new_afc_delay;
return;
}
break;
case AG_SEL_FIT:
if(ag.mode_control == 2)
{
mouse_active_flag=1;
numinput_xpix=agbutt[AG_SEL_FIT].x1+7*text_width/2-1;
numinput_ypix=agbutt[AG_SEL_FIT].y1+2;
numinput_chars=3;
erase_numinput_txt();
numinput_flag=FIXED_INT_PARM;
par_from_keyboard_routine=new_afc_fit_points;
return;
}
break;
}
finish:;
leftpressed=BUTTON_IDLE;
mouse_active_flag=0;
new_afc_graph();
}
void make_afc_stony(void)
{
ag_ston_y=ag_fpar_y0-(int)(ag_floatypix*
(float)log10(ag.minston)/(float)AG_STON_RANGE);
if(ag_ston_y < ag_fpar_ytop)
{
ag_ston_y = ag_fpar_ytop;
ag.minston=(float)pow(10.,AG_STON_RANGE*(ag_fpar_y0-ag_ston_y)/ag_floatypix);
}
}
void make_afc_ston(void)
{
int k;
k=ag_fpar_y0-ag_ston_y;
if(k<2)
{
k=2;
ag_ston_y=ag_fpar_y0+2;
}
ag.minston=(float)pow(10.,AG_STON_RANGE*k/ag_floatypix);
if(ag.minston < 1.1)
{
ag.minston=1.1F;
make_afc_stony();
}
}
void make_afc_locky(void)
{
ag_lock_y=ag_fpar_y0-(int)(2*ag_floatypix*ag.lock_range/ag.frange);
if(ag_lock_y < ag_fpar_ytop)
{
ag_lock_y = ag_fpar_ytop;
ag.lock_range=0.5F*(float)(ag_fpar_y0-ag_lock_y)*ag.frange/ag_floatypix;
}
}
void make_afc_lock(void)
{
ag.lock_range=0.5F*(float)(ag_fpar_y0-ag_lock_y)*ag.frange/ag_floatypix;
if(ag.lock_range <0)
{
ag.lock_range=0;
make_afc_locky();
}
}
void make_afc_searchy(void)
{
ag_srch_y=ag_fpar_y0-(int)(ag_floatypix*(float)ag.search_range);
if(ag_srch_y < ag_fpar_ytop)
{
ag_srch_y = ag_fpar_ytop;
ag.search_range=(float)(ag_fpar_y0-ag_srch_y)/ag_floatypix;
}
}
void make_afc_search(void)
{
ag.search_range=(float)(ag_fpar_y0-ag_srch_y)/ag_floatypix;
if(ag.search_range <0)
{
ag.search_range=0;
make_afc_searchy();
}
}
void ag_ston_control(void)
{
int ya,yb;
yb=mouse_y;
if(yb > ag_fpar_y0-2)yb=ag_fpar_y0-2;
if(yb < ag_fpar_ytop)yb=ag_fpar_ytop;
if(ag_ston_y!=yb)
{
pause_screen_and_hide_mouse();
ya=ag_ston_y;
ag_ston_y=yb;
make_afc_ston();
update_bar(ag_ston_x1,ag_ston_x2,ag_fpar_y0,ag_ston_y,ya,
AG_STON_RANGE_COLOR,ag_stonbuf);
resume_thread(THREAD_SCREEN);
}
if(leftpressed == BUTTON_RELEASED)
{
leftpressed=BUTTON_IDLE;
make_modepar_file(GRAPHTYPE_AG);
mouse_active_flag=0;
}
}
void ag_lock_control(void)
{
int ya,yb;
yb=mouse_y;
if(yb > ag_fpar_y0-2)yb=ag_fpar_y0-2;
if(yb < ag_fpar_ytop)yb=ag_fpar_ytop;
if(ag_lock_y!=yb)
{
pause_screen_and_hide_mouse();
ya=ag_lock_y;
ag_lock_y=yb;
make_afc_lock();
update_bar(ag_lock_x1,ag_lock_x2,ag_fpar_y0,ag_lock_y,ya,
AG_LOCK_RANGE_COLOR,ag_lockbuf);
resume_thread(THREAD_SCREEN);
}
if(leftpressed == BUTTON_RELEASED)
{
leftpressed=BUTTON_IDLE;
make_modepar_file(GRAPHTYPE_AG);
mouse_active_flag=0;
}
}
void ag_srch_control(void)
{
int ya,yb;
yb=mouse_y;
if(yb > ag_fpar_y0-2)yb=ag_fpar_y0-2;
if(yb < ag_fpar_ytop)yb=ag_fpar_ytop;
if(ag_srch_y!=yb)
{
pause_screen_and_hide_mouse();
ya=ag_srch_y;
ag_srch_y=yb;
make_afc_search();
update_bar(ag_srch_x1,ag_srch_x2,ag_fpar_y0,ag_srch_y,ya,
AG_SRC_RANGE_COLOR,ag_srchbuf);
resume_thread(THREAD_SCREEN);
}
if(leftpressed == BUTTON_RELEASED)
{
leftpressed=BUTTON_IDLE;
make_modepar_file(GRAPHTYPE_AG);
mouse_active_flag=0;
}
}
void mouse_on_afc_graph(void)
{
int event_no;
// First find out is we are on a button or border line.
for(event_no=0; event_no<MAX_AGBUTT; event_no++)
{