-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommander.py
204 lines (162 loc) · 7.22 KB
/
commander.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
'''
This is the main script of the repository used for launching experiments.
It aggregates input arguments and decides upon them what tasks to perform.
'''
import os
import sys
import shutil
import torch
from loaders import get_loader
from models import get_model
from toolbox import utils, logger, metrics, losses, optimizers
import trainer
from args import parse_args
from torch.utils.tensorboard import SummaryWriter
def init_logger(args, model):
# set loggers
exp_name = args.name
exp_logger = logger.Experiment(exp_name, args.__dict__)
exp_logger.add_meters('train', metrics.make_meters(args.num_classes))
exp_logger.add_meters('val', metrics.make_meters(args.num_classes))
exp_logger.add_meters(
'hyperparams', {'learning_rate': metrics.ValueMeter()})
return exp_logger
def save_checkpoint(args, state, is_best, filename='checkpoint.pth.tar'):
utils.check_dir(args.log_dir)
filename = os.path.join(args.log_dir, filename)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(
args.log_dir, 'model_best.pth.tar'))
fn = os.path.join(args.log_dir, 'checkpoint_epoch{}.pth.tar')
torch.save(state, fn.format(state['epoch']))
if (state['epoch'] - 1) % 5 != 0:
# remove intermediate saved models, e.g. non-modulo 5 ones
if os.path.exists(fn.format(state['epoch'] - 1)):
os.remove(fn.format(state['epoch'] - 1))
path_logger = os.path.join(args.log_dir, 'logger.json')
state['exp_logger'].to_json(path_logger)
def load_checkpoint(args, model):
filename = ''
if 'latest' == args.resume:
filename = os.path.join(args.log_dir, 'checkpoint.pth.tar')
elif 'best' == args.resume:
filename = os.path.join(args.log_dir, 'model_best.pth.tar')
else:
filename = os.path.join(
args.log_dir, 'checkpoint_epoch{}.pth.tar'.format(args.resume))
print('Verifying if resume file exists')
if os.path.exists(filename):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(filename)
start_epoch = checkpoint['epoch']
best_score = checkpoint['best_score']
best_epoch = checkpoint['best_epoch']
exp_logger = checkpoint['exp_logger']
learning_rate = exp_logger.meters['hyperparams']['learning_rate'].val
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(filename, checkpoint['epoch']))
return model, exp_logger, start_epoch, best_score, best_epoch, learning_rate
else:
print('checkpoint file {} does not exist!'.format(filename))
return None
def main():
best_score, best_epoch = -1, -1
if len(sys.argv) > 1:
args = parse_args()
if args.verbose:
print('----- Experiments parameters -----')
for k, v in args.__dict__.items():
print(k, ':', v)
else:
print('Please provide some parameters for the current experiment. Check-out arg.py for more info!')
sys.exit()
# init random seeds
utils.setup_env(args)
# init tensorboard summary is asked
tb_writer = SummaryWriter(
f'{args.data_dir}/runs/{args.name}/tensorboard') if args.tensorboard else None
# init data loaders
loader = get_loader(args)
train_data = loader(data_dir=args.data_dir, split='train', phase='train')
sample_method, cb_weights, sample_weights = None, None, None
if args.sampler:
sample_weights = torch.tensor(
train_data.get_sampler_weights(args.sampler))
sample_method = torch.utils.data.WeightedRandomSampler(
sample_weights, len(train_data))
elif args.class_balance:
cb_weights = torch.tensor(
train_data.get_cb_weights(args.class_balance))
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=False if args.sampler else True, num_workers=args.workers, pin_memory=True, sampler=sample_method)
val_loader = torch.utils.data.DataLoader(loader(data_dir=args.data_dir, split='val', phase='test'),
batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
exp_logger, lr = None, None
model = get_model(args)
tb_writer.add_graph(model, next(iter(train_loader))[0])
criterion = losses.get_criterion(args, cb_weights)
# optionally resume from a checkpoint
if args.resume:
model, exp_logger, args.start_epoch, best_score, best_epoch, lr = load_checkpoint(
args, model)
args.lr = lr
else:
# create all output folders
utils.init_output_env(args)
if exp_logger is None:
exp_logger = init_logger(args, model)
optimizer, scheduler = optimizers.get_optimizer(args, model)
print(' + Number of params: {}'.format(utils.count_params(model)))
model.to(args.device)
criterion.to(args.device)
if args.test:
test_loader = torch.utils.data.DataLoader(loader(data_dir=args.data_dir, split='test',phase='test'), batch_size=args.batch_size,
shuffle=False, num_workers=args.workers, pin_memory=True)
trainer.test(args, test_loader, model, criterion, args.start_epoch,
eval_score=metrics.accuracy_classif, output_dir=args.out_pred_dir, has_gt=True, tb_writer=tb_writer)
sys.exit()
is_best = True
for epoch in range(args.start_epoch, args.epochs + 1):
print('Current epoch: ', epoch)
trainer.train(args, train_loader, model, criterion, optimizer, exp_logger, epoch,
eval_score=metrics.accuracy_classif, tb_writer=tb_writer)
# evaluate on validation set
mAP, val_loss, res_list = trainer.validate(
args, val_loader, model, criterion, exp_logger, epoch, eval_score=metrics.accuracy_classif, tb_writer=tb_writer)
# update learning rate
if scheduler is None:
trainer.adjust_learning_rate(args, optimizer, epoch)
else:
prev_lr = optimizer.param_groups[0]['lr']
if 'ReduceLROnPlateau' == args.scheduler:
scheduler.step(val_loss)
else:
scheduler.step()
print(
f"Updating learning rate from {prev_lr} to {optimizer.param_groups[0]['lr']}")
# remember best acc and save checkpoint
is_best = mAP > best_score
best_score = max(mAP, best_score)
if True == is_best:
best_epoch = epoch
save_checkpoint(args, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_score': best_score,
'best_epoch': best_epoch,
'exp_logger': exp_logger,
'res_list': res_list,
}, is_best)
for name, param in model.named_parameters():
tb_writer.add_histogram(name, param, epoch)
try:
tb_writer.add_histogram(f'{name}.grad', param.grad, epoch)
except:
print(f'{name}.grad not plottable on Tensorboard')
if args.tensorboard:
tb_writer.close()
print("Scripts have run successfully")
if __name__ == '__main__':
main()