-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlya_rates_plot.py
272 lines (208 loc) · 9.35 KB
/
lya_rates_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
'''This script is a small modification of read_ADF15 in Aurora, for the purpose of plotting Ly-a rates nicely.
sciortino,2021
'''
import aurora
import matplotlib.pyplot as plt
plt.ion()
import numpy as np
from IPython import embed
from scipy.interpolate import interp1d, RectBivariateSpline
import matplotlib as mpl
mpl.rcParams['axes.titlesize'] = 24
mpl.rcParams['axes.labelsize'] = 20
mpl.rcParams['lines.linewidth'] = 3
mpl.rcParams['lines.markersize'] = 10
mpl.rcParams['xtick.labelsize'] = 16
mpl.rcParams['ytick.labelsize'] = 16
mpl.rcParams['legend.fontsize'] = 16
def read_adf15(path, order=1, plot_lines=[], ax=None, plot_3d=False):
"""Read photon emissivity coefficients from an ADAS ADF15 file.
Returns a dictionary whose keys are the wavelengths of the lines in angstroms.
The value is an interpolant that will evaluate the log10 of the PEC at a desired density
and temperature. The power-10 exponentiation of this PEC has units of :math:`photons \cdot cm^3/s`
Units for interpolation: :math:`cm^{-3}` for density; :math:`eV` for temperature.
Parameters
----------
path : str
Path to adf15 file to read.
order : int, opt
Parameter to control the order of interpolation. Default is 1 (linear interpolation).
plot_lines : list
List of lines whose PEC data should be displayed. Lines should be identified
by their wavelengths. The list of available wavelengths in a given file can be retrieved
by first running this function ones, checking dictionary keys, and then requesting a
plot of one (or more) of them.
ax : matplotlib axes instance
If not None, plot on this set of axes.
plot_3d : bool
Display PEC data as 3D plots rather than 2D ones.
Returns
-------
log10pec_dict : dict
Dictionary containing interpolation functions for each of the available lines of the
indicated type (ionization or recombination). Each interpolation function takes as arguments
the log-10 of ne and Te and returns the log-10 of the chosen PEC.
Examples
--------
To plot the Lyman-alpha photon emissivity coefficients for H (or its isotopes), you can use:
>>> filename = 'pec96#h_pju#h0.dat' # for D Ly-alpha
>>> # fetch file automatically, locally, from AURORA_ADAS_DIR, or directly from the web:
>>> path = aurora.get_adas_file_loc(filename, filetype='adf15')
>>>
>>> # plot Lyman-alpha line at 1215.2 A.
>>> # see available lines with log10pec_dict.keys() after calling without plot_lines argument
>>> log10pec_dict = aurora.read_adf15(path, plot_lines=[1215.2])
Another example, this time also with charge exchange::
>>> filename = 'pec96#c_pju#c2.dat'
>>> path = aurora.get_adas_file_loc(filename, filetype='adf15')
>>> log10pec_dict = aurora.read_adf15(path, plot_lines=[361.7])
Metastable-resolved files will be automatically identified and parsed accordingly, e.g.::
>>> filename = 'pec96#he_pjr#he0.dat'
>>> path = aurora.get_adas_file_loc(filename, filetype='adf15')
>>> log10pec_dict = aurora.read_adf15(path, plot_lines=[584.4])
Notes
-----
This function expects the format of PEC files produced via the ADAS adas810 or adas218 routines.
"""
# find out whether file is metastable resolved
meta_resolved = path.split('#')[-2][-1]=='r'
if meta_resolved: print('Identified metastable-resolved PEC file')
with open(path, 'r') as f:
lines = f.readlines()
cs = path.split('#')[-1].split('.dat')[0]
header = lines.pop(0)
# Get the expected number of lines by reading the header:
num_lines = int(header.split()[0])
log10pec_dict = {}
for i in range(0, num_lines):
if '----' in lines[0]:
_ = lines.pop(0) # separator may exist before each transition
# Get the wavelength, number of densities and number of temperatures
# from the first line of the entry:
l = lines.pop(0)
header = l.split()
# sometimes the wavelength and its units are not separated:
try:
header = [hh.split('A')[0] for hh in header]
except:
# lam and A are separated. Delete 'A' unit.
header = np.delete(header, 1)
lam = float(header[0])
if header[1]=='':
# 2nd element was empty -- annoyingly, this happens sometimes
num_den = int(header[2])
num_temp = int(header[3])
else:
num_den = int(header[1])
num_temp = int(header[2])
if meta_resolved:
# index of metastable state
INDM = int(header[-3].split('/')[0].split('=')[-1])
# Get the densities:
dens = []
while len(dens) < num_den:
dens += [float(v) for v in lines.pop(0).split()]
dens = np.asarray(dens)
# Get the temperatures:
temp = []
while len(temp) < num_temp:
temp += [float(v) for v in lines.pop(0).split()]
temp = np.asarray(temp)
# Get the PEC's:
PEC = []
while len(PEC) < num_den:
PEC.append([])
while len(PEC[-1]) < num_temp:
PEC[-1] += [float(v) for v in lines.pop(0).split()]
PEC = np.asarray(PEC)
# find what kind of rate we are dealing with
if 'recom' in l.lower(): rate_type = 'recom'
elif 'excit' in l.lower(): rate_type = 'excit'
elif 'chexc' in l.lower(): rate_type = 'chexc'
elif 'drsat' in l.lower(): rate_type = 'drsat'
elif 'ion' in l.lower(): rate_type = 'ioniz'
else:
# attempt to report unknown rate type -- this should be fairly robust
rate_type = l.replace(' ','').lower().split('type=')[1].split('/')[0]
# create dictionary with keys for each wavelength:
if lam not in log10pec_dict:
log10pec_dict[lam] = {}
# add a key to the log10pec_dict[lam] dictionary for each type of rate: recom, excit or chexc
# interpolate PEC on log dens,temp scales
pec_fun = RectBivariateSpline(
np.log10(dens),
np.log10(temp),
np.log10(PEC), # NB: interpolation of log10 of PEC to avoid issues at low ne or Te
kx=order,
ky=order
)
if meta_resolved:
if rate_type not in log10pec_dict[lam]:
log10pec_dict[lam][rate_type] = {}
log10pec_dict[lam][rate_type][f'meta{INDM}'] = pec_fun
else:
log10pec_dict[lam][rate_type] = pec_fun
if lam in plot_lines:
# only plot 3 densities at chosen indices
dens_idx = np.array([13, 15, 16,18, 19])
# plot PEC values over ne,Te grid given by ADAS, showing interpolation quality
NE, TE = np.meshgrid(dens[dens_idx], temp)
PEC_eval = 10**pec_fun.ev(np.log10(NE), np.log10(TE)).T
# plot PEC rates
_ax = _plot_pec(dens[dens_idx],temp, PEC[dens_idx,:], PEC_eval, lam,cs,rate_type, ax, plot_3d)
meta_str = ''
if meta_resolved: meta_str = f' , meta = {INDM}'
#_ax.set_title(cs + r' , $\lambda$ = '+str(lam) +' $\AA$, '+rate_type+meta_str)
plt.tight_layout()
return log10pec_dict
def _plot_pec(dens, temp, PEC, PEC_eval, lam,cs,rate_type, ax=None, plot_3d=False):
'''Private method to plot PEC data within :py:func:`~aurora.atomic.read_adf15` function.
'''
if ax is None:
f1 = plt.figure() #figsize=(7,6))
ax1 = f1.add_subplot(1,1,1)
else:
ax1 = ax
# plot in 2D
labels = ['{:.0e}'.format(ne)+r' $cm^{-3}$' for ne in dens] #ne_eval]
for ine in np.arange(PEC.shape[0]):
l, = ax1.plot(temp, PEC_eval[ine,:], label=labels[ine])
ax1.plot(temp, PEC[ine,:], color=l.get_color(), marker='o', mfc=l.get_color(), ms=5.)
ax1.set_xlabel(r'$T_e$ [eV]')
ax1.set_ylabel('PEC [photons $\cdot cm^3/s$]')
ax1.set_yscale('log')
ax1.set_xscale('log')
ax1.set_xlim([10,1e4])
#ax1.set_ylim([6e-9,6e-8])
ax1.legend(loc='best').set_draggable(True)
ax1.grid('on', which='both')
return ax1
filename = 'pec96#h_pju#h0.dat' # for D Ly-alpha
# fetch file automatically, locally, from AURORA_ADAS_DIR, or directly from the web:
path = aurora.get_adas_file_loc(filename, filetype='adf15')
log10pec_dict = read_adf15(path, plot_lines=[1215.2])
###### Now fetch ionization and recombination rates
atom_data = aurora.atomic.get_atom_data('H',['scd','acd'])
#ne_prof = np.array([1e12,5e12,1e13,5e13,1e14])
fig1,ax1 = plt.subplots()
fig2,ax2 = plt.subplots()
for ne in [1e12,5e12,1e13,5e13,1e14]:
Te_prof = np.linspace(10., 1e4, 1000)
ne_prof = ne*np.ones_like(Te_prof)
lne = np.log10(ne_prof)
lTe = np.log10(Te_prof)
S_rates = aurora.interp_atom_prof(atom_data['scd'],lne, lTe)
R_rates = aurora.interp_atom_prof(atom_data['acd'],lne, lTe)
ax1.loglog(Te_prof, S_rates[:,0])
ax1.set_xlabel(r'$T_e$ [eV]')
ax1.set_ylabel(r'$S$ [s$^{-1}$]')
ax2.loglog(Te_prof, R_rates[:,0], label=fr'$n_e={ne:.0g}$ cm$^{{{-3}}}$')
ax2.set_xlabel(r'$T_e$ [eV]')
ax2.set_ylabel(r'$R$ [s$^{-1}$]')
ax2.legend(loc='best').set_draggable(True)
ax1.grid('on', which='both')
ax1.set_xlim([10,1e4])
plt.tight_layout()
ax2.grid('on', which='both')
plt.tight_layout()
ax2.set_xlim([10,1e4])