-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCCCPSubsPorous.f
363 lines (363 loc) · 14.2 KB
/
CCCPSubsPorous.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
!
! Helper subroutines for CCCP
!
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
! Preprocessor definitions
!-----------------------------------------------------------------------
#ifndef SCMM_HYPO_CCCP_SUBS
#define SCMM_HYPO_CCCP_SUBS
!-----------------------------------------------------------------------
! Include files
!-----------------------------------------------------------------------
!DEC$ FREEFORM
#include './Dependencies/quartic.f90'
!DEC$ NOFREEFORM
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
! Subroutines
!-----------------------------------------------------------------------
! Subroutines should be inlined by the compiler
!-----------------------------------------------------------------------
!DIR$ ATTRIBUTES FORCEINLINE :: yieldfunction, yieldgradient, RMAP,
!DIR$& UpdateDamageHan, calcTauEff, findRoot
!-----------------------------------------------------------------------
!
!-----------------------------------------------------------------------
! SUBROUTINE yieldfunction
!-----------------------------------------------------------------------
!
!-----------------------------------------------------------------------
subroutine yieldfunction(tau_eff,tau_c,rho,m,f)
!
implicit none
!
integer, parameter :: alpha = 12
real*8, intent(in) :: tau_eff(alpha),tau_c(alpha),rho,m
real*8, intent(out) :: f
! Local variables
real*8 temp
real*8 zero,one
parameter(zero=0.d0,one=1.d0)
integer a
!-----
temp = zero
do a = 1,alpha
temp = temp+exp((rho/m)*(abs(tau_eff(a))/(tau_c(a))-one))
enddo
f = (one/rho)*log(temp)
!
return
end subroutine yieldfunction
!
!-----------------------------------------------------------------------
! SUBROUTINE calcTauEff
!-----------------------------------------------------------------------
!
!-----------------------------------------------------------------------
subroutine calcTauEff(tau,sigma,VVF,aParam,q1,q2,tau_eff)
!
use PolynomialRoots
implicit none
!
real*8, intent(in) :: tau(12),sigma(6),VVF,aParam,q1,q2
real*8, intent(out) :: tau_eff(12)
! Local variables
integer alpha, a
real*8 zero, one, half, three, oThree, precision
parameter(alpha=12,zero=0.d0,one=1.d0,half=5.d-1,three=3.d0,
. oThree=one/three,precision=epsilon(zero))
real*8 coeff(5), Sh, Seq2
complex*16 z(4)
!-----------------------------------------------------------------------
Seq2 = half*((sigma(1)-sigma(2))**2
+ +(sigma(2)-sigma(3))**2
+ +(sigma(3)-sigma(1))**2)
+ +three*sigma(4)**2+three*sigma(5)**2
+ +three*sigma(6)**2! Equivalent von Mises stress squared
Sh = (sigma(1)+sigma(2)+sigma(3))*oThree ! hydrostatic stress
!-----------------------------------------------------------------------
coeff(5) = 9.d0*q1*VVF*q2**8*Sh**8/358400000.d0
coeff(4) = three*q1*VVF*q2**6*Sh**6/320000.d0
coeff(3) = three*q1*VVF*q2**4*Sh**4/1600.d0
coeff(1) = 2.d0*q1*VVF-q1**2*VVF**2-one
!-----------------------------------------------------------------------
if(coeff(5).gt.precision)then
do a=1, alpha
coeff(2) = tau(a)**2+2.d0*aParam*VVF*Seq2/45.d0+
+ three*q1*VVF*q2**2*Sh**2/20.d0
call QuarticRoots(coeff, z)
call findRoot(tau, z, a, 4, tau_eff)
enddo
else
do a=1, alpha
tau_eff(a) = sqrt((tau(a)**2+2.d0*aParam*VVF*Seq2/45.d0+
+ three*q1*VVF*q2**2*Sh**2/20.d0)/(one+
+ q1**2*VVF**2-2.d0*q1*VVF))*sign(one,tau(a))
enddo
endif
!-----------------------------------------------------------------------
return
end subroutine calcTauEff
!
!-----------------------------------------------------------------------
! SUBROUTINE findRoot
!-----------------------------------------------------------------------
!
!-----------------------------------------------------------------------
subroutine findRoot(tau,z,a,Nroot,tau_eff)
!
implicit none
!
real*8, intent(in) :: tau(12)
complex*16, intent(in) :: z(4)
integer, intent(in) :: a, Nroot
real*8, intent(out) :: tau_eff(12)
! Local variables
integer code, i
real*8 zero, one, precision
parameter(zero=0.d0,one=1.d0,precision=epsilon(zero))
!-----------------------------------------------------------------------
code = 0
do i=1,Nroot
if((abs(aimag(z(i))).le.precision)
. .and.(dble(z(i)).gt.precision))then
tau_eff(a) = one/sqrt(dble(z(i)))*sign(one,tau(a))
code = code + 1
endif
enddo
if(code.eq.0)then
tau_eff(a) = tau(a)
#if defined SCMM_HYPO_STANDARD
call STDB_ABQERR(-1,'A real value for tau_eff was not found'
. ,,,)
#elif defined SCMM_HYPO_EXPLICIT
call XPLB_ABQERR(-1,'A real value for tau_eff was not found'
. ,,,)
#else
write(*,*) 'Warning! A real value for tau_eff was not found'
#endif
elseif(code.gt.1)then
#if defined SCMM_HYPO_STANDARD
call STDB_ABQERR(-1,'More than one root found for tau_eff'
. ,,,)
#elif defined SCMM_HYPO_EXPLICIT
call XPLB_ABQERR(-1,'More than one root found for tau_eff'
. ,,,)
#else
write(*,*) 'Warning! More than one root found for tau_eff'
write(*,*) "Number of roots", code
write(*,*) " Roots: REAL PART IMAGINARY PART"
write(*,"(2ES20.12)") (dble(z(i)), aimag(z(i)), i=1,Nroot)
#endif
endif
!-----------------------------------------------------------------------
return
end subroutine findRoot
!
!-----------------------------------------------------------------------
! SUBROUTINE yieldgradient
!-----------------------------------------------------------------------
!
!-----------------------------------------------------------------------
subroutine yieldgradient(tau,tau_eff,sigma,tau_c,VVF,rho,m,aParam,
. q1,q2,S,dfdtau_eff,dfdtau_c,dfdsigma,
. dfdsigmaskew,dfdVVF)
!
implicit none
!
integer, parameter :: alpha = 12
real*8, intent(in) :: tau(alpha),tau_eff(alpha),sigma(6),
. tau_c(alpha),VVF,rho,m,aParam,q1,q2,
. S(alpha,3,3)
real*8, intent(out) :: dfdtau_eff(alpha),dfdtau_c(alpha),
. dfdsigma(6),dfdsigmaskew(3),dfdVVF
! Local variables
real*8 dnom,temp,xmat(3,3),dgdtau_eff(12),dgdVVF(12),
. dgdsigma(12,3,3),sigXmat(3,3),Ide(3,3),Seq2,Sh
real*8 zero,one,half,two,three,oThree,precision
parameter(zero=0.d0,one=1.d0,half=5.d-1,two=2.d0,
. three=3.d0,oThree=one/three,precision=epsilon(zero))
integer a,j,i
!-----------------------------------------------------------------------
Seq2 = half*((sigma(1)-sigma(2))**2
+ +(sigma(2)-sigma(3))**2
+ +(sigma(3)-sigma(1))**2)
+ +three*sigma(4)**2+three*sigma(5)**2
+ +three*sigma(6)**2! Equivalent von Mises stress squared
Sh = (sigma(1)+sigma(2)+sigma(3))*oThree ! hydrostatic stress
!-----------------------------------------------------------------------
dnom = zero
do a = 1,alpha
temp = exp((rho/m)*(abs(tau_eff(a))/(tau_c(a))-one))
dnom = dnom+temp
dfdtau_eff(a) = temp*sign(one,tau_eff(a))/(tau_c(a))
dfdtau_c(a) = -temp*abs(tau_eff(a))/((tau_c(a)**2))
enddo
dfdtau_eff = dfdtau_eff/(m*dnom)
dfdtau_c = dfdtau_c/(m*dnom)
do a=1,alpha
if(abs(tau_eff(a)).gt.precision)then
dgdtau_eff(a) = -two*(tau(a)**2)/(tau_eff(a)**3)-
. 4.d0*aParam*VVF*Seq2/(45.d0*tau_eff(a)**3)-
. two*q1*VVF*(three*q2**2*Sh**2/(20.d0*tau_eff(a)**3)+
. three*q2**4*Sh**4/(800.d0*tau_eff(a)**5)+
. 9.d0*q2**6*Sh**6/(320000.d0*tau_eff(a)**7)+
. 9.d0*q2**8*Sh**8/(89600000.d0*tau_eff(a)**9))
dgdVVF(a) = two*aParam*Seq2/(45.d0*tau_eff(a)**2)-
. two*q1**2*VVF+two*q1+
. two*q1*(three*q2**2*Sh**2/(40.d0*tau_eff(a)**2)+
. three*q2**4*Sh**4/(3200.d0*tau_eff(a)**4)+
. three*q2**6*Sh**6/(640000.d0*tau_eff(a)**6)+
. 9.d0*q2**8*Sh**8/(716800000.d0*tau_eff(a)**8))
else
dgdtau_eff(a) = one
dgdVVF(a) = zero
endif
enddo
dfdVVF = zero
do a=1,alpha
dfdVVF = dfdVVF - dfdtau_eff(a)*dgdVVF(a)/dgdtau_eff(a)
enddo
!-----------------------------------------------------------------------
Ide(1,1) = one
Ide(1,2) = zero
Ide(1,3) = zero
Ide(2,1) = zero
Ide(2,2) = one
Ide(2,3) = zero
Ide(3,1) = zero
Ide(3,2) = zero
Ide(3,3) = one
call vec2mat(sigma,sigXmat)
!-----------------------------------------------------------------------
do j=1,3
do i=1,3
do a=1,alpha
if(abs(tau_eff(a)).gt.precision)then
dgdsigma(a,i,j) =
. two*aParam*VVF*(sigXmat(i,j)-Sh*Ide(i,j))/(15.d0*tau_eff(a)**2)+
. two*tau(a)*S(a,i,j)/tau_eff(a)**2+
. (two/three)*q1*VVF*Ide(i,j)*(
. three*q2**2*Sh/(20.d0*tau_eff(a)**2)+
. three*q2**4*Sh**3/(800.d0*tau_eff(a)**4)+
. 9.d0*q2**6*Sh**5/(320000.d0*tau_eff(a)**6)+
. 9.d0*q2**8*Sh**7/(89600000.d0*tau_eff(a)**8))
else
dgdsigma(a,i,j) = zero
endif
enddo
enddo
enddo
!-----------------------------------------------------------------------
dfdsigmaskew = zero
do a=1,alpha
dfdsigmaskew(1) = dfdsigmaskew(1)-
. half*dfdtau_eff(a)*(dgdsigma(a,3,2)-
. dgdsigma(a,2,3))/dgdtau_eff(a)
dfdsigmaskew(2) = dfdsigmaskew(2)-
. half*dfdtau_eff(a)*(dgdsigma(a,1,3)-
. dgdsigma(a,3,1))/dgdtau_eff(a)
dfdsigmaskew(3) = dfdsigmaskew(3)-
. half*dfdtau_eff(a)*(dgdsigma(a,2,1)-
. dgdsigma(a,1,2))/dgdtau_eff(a)
enddo
xmat = zero
do j=1,3
do i=1,3
do a=1,alpha
xmat(i,j) = xmat(i,j)-
. half*dfdtau_eff(a)*(dgdsigma(a,i,j)+
. dgdsigma(a,j,i))/dgdtau_eff(a)
enddo
enddo
enddo
call mat2vec(xmat,dfdsigma)
!-----------------------------------------------------------------------
!
return
end subroutine yieldgradient
!
!-----------------------------------------------------------------------
! SUBROUTINE RMAP
!-----------------------------------------------------------------------
!
!-----------------------------------------------------------------------
subroutine RMAP(f,dfdtau_eff,dfdtau_c,dfdsigma,VVF,dfdVVF,
. sigma,C11,C12,C44,hMatrix,dlambda)
!
implicit none
!
integer, parameter :: alpha = 12
real*8, intent(in) :: f,dfdtau_eff(alpha),dfdtau_c(alpha),
. dfdsigma(6),VVF,dfdVVF,sigma(6),
. C11,C12,C44,hMatrix(alpha,alpha)
real*8, intent(out) :: dlambda
! Local variables
real*8 temp1,temp2,temp3,temp(6),Seq,Sh
real*8 zero,half,one,three,four,oThree
parameter(zero=0.d0,half=5.d-1,one=1.d0,three=3.d0,
. four=4.d0,oThree=1.d0/3.d0)
integer a,b
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
temp1 = zero
temp(1) = C11*(dfdsigma(1))*(one-VVF)
+ +C12*(dfdsigma(2))*(one-VVF)
+ +C12*(dfdsigma(3))*(one-VVF)
temp(2) = C12*(dfdsigma(1))*(one-VVF)
+ +C11*(dfdsigma(2))*(one-VVF)
+ +C12*(dfdsigma(3))*(one-VVF)
temp(3) = C12*(dfdsigma(1))*(one-VVF)
+ +C12*(dfdsigma(2))*(one-VVF)
+ +C11*(dfdsigma(3))*(one-VVF)
temp(4) = four*C44*(dfdsigma(4))*(one-VVF)
temp(5) = four*C44*(dfdsigma(5))*(one-VVF)
temp(6) = four*C44*(dfdsigma(6))*(one-VVF)
do a=1,6
temp1 = temp1+temp(a)*dfdsigma(a)
enddo
!-----------------------------------------------------------------------
temp2 = zero
do b=1,alpha
do a=1,alpha
temp2 = temp2+hMatrix(a,b)*abs(dfdtau_eff(b))*dfdtau_c(a)
enddo
enddo
!-----------------------------------------------------------------------
temp3 = (one-VVF)**2*dfdVVF*(dfdsigma(1)+dfdsigma(2)+dfdsigma(3))
!-----------------------------------------------------------------------
dlambda = f/(temp1-temp2-temp3)
!-----------------------------------------------------------------------
return
end subroutine RMAP
!
!-----------------------------------------------------------------------
! SUBROUTINE UpdateDamageHan
!-----------------------------------------------------------------------
! Updates the damage variable / void volume fraction
!-----------------------------------------------------------------------
subroutine UpdateDamageHan(VVF,dfdsigma,dlambda)
!
implicit none
!
real*8, intent(inout) :: VVF
real*8, intent(in) :: dfdsigma(6),dlambda
! Local variables
real*8 one,zero
parameter(zero=0.d0,one=1.d0)
!-----------------------------------------------------------------------
VVF = VVF + (one-VVF)**2*(dfdsigma(1)+dfdsigma(2)+
. dfdsigma(3))*dlambda
VVF = max(VVF,zero)
!-----------------------------------------------------------------------
return
end subroutine UpdateDamageHan
!
!-----------------------------------------------------------------------
! End preprocessor definitions
!-----------------------------------------------------------------------
#endif
!-----------------------------------------------------------------------