-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCCCP.f
735 lines (735 loc) · 34.4 KB
/
CCCP.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
!
! Subroutine CCCP
!
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
! Subroutines should be inlined by the compiler
!-----------------------------------------------------------------------
!DIR$ ATTRIBUTES FORCEINLINE :: CCCP
!-----------------------------------------------------------------------
! Preprocessor definitions
!-----------------------------------------------------------------------
#ifndef SCMM_HYPO_CCCP
#define SCMM_HYPO_CCCP
!-----------------------------------------------------------------------
! Subroutine CCCP
!-----------------------------------------------------------------------
subroutine CCCP(stressNew,stateNew,defgradNew,
+ stressOld,stateOld,defgradOld,dt,props,
+ nblock,nstatev,nprops,Dissipation)
!-----------------------------------------------------------------------
implicit none
!-----------------------------------------------------------------------
integer nblock, nstatev, nprops
real*8 dt
real*8 props(nprops),defgradOld(nblock,9),
+ stressOld(nblock,6),
+ stateOld(nblock,nstatev),
+ defgradNew(nblock,9),
+ stressNew(nblock,6), stateNew(nblock,nstatev)
!-----------------------------------------------------------------------
! Internal vumat variables
!-----------------------------------------------------------------------
integer alpha,hflag,km,Txflag,iter,maxIter
parameter(alpha=12)! Number of slip systems (12 for FCC materials)
real*8 C11! Elastic coefficient
real*8 C12! Elastic coefficient
real*8 C44! Elastic coefficient
real*8 gamma,gamma_old! Accumulated plastic shear strain
real*8 PEQ,PEQ_old! Equivalent von Mises plastic strain
real*8 dgamma(alpha)! Shear strain increment for slip system alpha
real*8 tau0_c! Initial critical resolved shear stress
real*8 theta1! Hardening parameter (Voce)
real*8 tau1! Hardening parameter (Voce)
real*8 theta2! Hardening parameter (Voce)
real*8 tau2! Hardening parameter (Voce)
real*8 h0! Hardening parameter
real*8 tau_s! Hardening parameter
real*8 am! Hardening parameter
real*8 dtau_c(alpha)! Critical resolved shear stress increment for slip system alpha
real*8 q(12,12)! Latent hardening matrix
real*8 tau(alpha)! Resolved shear stress for slip system alpha
#if SCMM_HYPO_DFLAG == 2
real*8 tau_eff(alpha)
#endif
real*8 tau_c(alpha)! Critical resolved shear stress for slip system alpha
real*8 n(alpha,3)! Slip plane normal for slip system alpha
real*8 m(alpha,3)! Slip direction for slip system alpha
real*8 Fold(3,3)! Old Deformation gradient F=RU
real*8 Fnew(3,3)! New Deformation gradient F=RU
real*8 R(3,3),RT(3,3)! Rotation tensor w.r.t. W and its transpose
real*8 phi1, PHI, phi2! Euler angles (phi1, PHI, phi2)
real*8 S(alpha,3,3)! Schmid tensor for slip system alpha
integer a,i,j! Loop variables
real*8 sigs(6)! Stress tensor components, S11, S22, S33, S12, S23, S31 in global coordinate system
real*8 sigma(6)! Corotaional stress tensor components, S11, S22, S33, S12, S23, S31 w.r.t. W
real*8 sig_tr(6)! Trial corotaional stress tensor components, S11, S22, S33, S12, S23, S31 w.r.t. W
real*8 depsilon(6)! Corotaional incremental strain tensor components, dE11, dE22, dE33, dE12, dE23, dE31 w.r.t. W
real*8 depsilon_p(6)! Corotaional incremental plastic strain tensor components, dE11, dE22, dE33, dE12, dE23, dE31 w.r.t. W
real*8 domega_p(3)! Corotaional incremental plastic spin tensor components, dW32, dW13, dW21 w.r.t. W
real*8 domega_e(3)! Incremental elastic spin tensor components, dW32, dW13, dW21 in global coordinate system
real*8 spininc(3)! Incremental spin tensor components, dW32, dW13, dW21 in global coordinate system
real*8 epsinc(6)! Incremental incremental strain tensor components, dE11, dE22, dE33, dE12, dE23, dE31 in global coordinate system
real*8 xmat1(3,3), xmat2(3,3)! Tensors used for transformations
real*8 Dissipation(nblock)! The change in dissipated inelastic specific energy (sigma_ij*D^p_ij*dt=sum(tau(alpha)*dgamma(alpha)))
real*8 ang(3)! Euler angles phi1, PHI, phi2
real*8 four, three, two, one, half, zero, deg2rad
real*8 oSqrtThree, oSqrtTwo, small, critEps
real*8 rhoParameter,mParameter,f,tol
real*8 dfdtau(alpha),dfdtau_c(alpha),dfdsigma(6)
#if SCMM_HYPO_DFLAG == 2
real*8 dfdVVF, dfdsigmaskew(3)
#endif
real*8 hMatrix(alpha,alpha),dlambda,ddgamma(alpha)
parameter(four=4.d0, three=3.d0, two=2.d0, one=1.d0,
+ half=5d-1, zero=0.d0,maxIter=1000,tol=1.d-8,
+ oSqrtThree=1.d0/sqrt(3.d0),
+ deg2rad=4.d0*atan(1.d0)/180.d0,
+ oSqrtTwo=1.d0/sqrt(2.d0), small=1.d-6, critEps=1.d-6)! Constants
integer nsub,k! Nuber of sub-steps and sub-step loop variable
real*8 dti! Sub-stepping time step
#if SCMM_HYPO_DFLAG == 1 || SCMM_HYPO_DFLAG == 2
real*8 VVF0, VVFC, VVF, q1, q2 ! Damage variables
integer isActive ! Is the integration point active (0=deleted,
! 1=active)
#endif
#if SCMM_HYPO_DFLAG == 2
real*8 aParam
#endif
!-----------------------------------------------------------------------
! Read parameters from ABAQUS material card
!-----------------------------------------------------------------------
C11 = props(1)! Elastic coefficient
C12 = props(2)! Elastic coefficient
C44 = props(3)! Elastic coefficient
mParameter = props(4)!
rhoParameter = props(5)!
tau0_c = props(6)! Initial critical resolved shear stress
! Texture flag (1=Euler angle from material card,
! 2=Euler angle from history card)
Txflag = nint(props(8))
phi1 = props(9)*deg2rad! Euler angle phi1 in radians
PHI = props(10)*deg2rad! Euler angle PHI in radians
phi2 = props(11)*deg2rad! Euler angle phi2 in radians
hflag = nint(props(12))! Hardening type (1=Voce,2=Kalidindi)
#if SCMM_HYPO_DFLAG == 1 || SCMM_HYPO_DFLAG == 2
VVF0 = props(18) ! Initial damage / void volume fraction
VVFC = props(19) ! Critical damage / void volume fraction
q1 = props(20) ! Damage evolution parameter
q2 = props(21) ! Damage evolution parameter
#endif
#if SCMM_HYPO_DFLAG == 2
aParam = props(22) ! Damage evolution parameter
#endif
!-----------------------------------------------------------------------
! Determine the hardening law parameters
!-----------------------------------------------------------------------
#ifdef SCMM_HYPO_VOCE_ONLY
!-----------------------------------------------------------------------
! Voce
!-----------------------------------------------------------------------
call unpackVoce(nprops,props,theta1,tau1,theta2,tau2,q)
#elif defined SCMM_HYPO_KALIDINDI_ONLY
!-----------------------------------------------------------------------
! Kalidindi et al.
!-----------------------------------------------------------------------
call unpackKalidindi(nprops,props,h0,tau_s,am,q)
#else
if(hflag.eq.1)then
!-----------------------------------------------------------------------
! Voce
!-----------------------------------------------------------------------
call unpackVoce(nprops,props,theta1,tau1,theta2,tau2,q)
elseif(hflag.eq.2)then
!-----------------------------------------------------------------------
! Kalidindi et al.
!-----------------------------------------------------------------------
call unpackKalidindi(nprops,props,h0,tau_s,am,q)
else
!-----------------------------------------------------------------------
! Error on wrong hflag
!-----------------------------------------------------------------------
#if defined SCMM_HYPO_STANDARD
call STDB_ABQERR(-3,'Wrong Hardening model, hflag = %I',
. hflag,,)
#elif defined SCMM_HYPO_EXPLICIT
call XPLB_ABQERR(-3,'Wrong Hardening model, hflag = %I',
. hflag,,)
#else
write(*,*) 'hflag = ',hflag
error stop 'ERROR: Wrong Hardening model'
#endif
endif
#endif
!-----------------------------------------------------------------------
! Slip normals and directions in local coordinate system for FCC
!-----------------------------------------------------------------------
n(1,1:3) = (/ oSqrtThree, oSqrtThree, oSqrtThree/)
n(2,1:3) = (/ oSqrtThree, oSqrtThree, oSqrtThree/)
n(3,1:3) = (/ oSqrtThree, oSqrtThree, oSqrtThree/)
n(4,1:3) = (/-oSqrtThree,-oSqrtThree, oSqrtThree/)
n(5,1:3) = (/-oSqrtThree,-oSqrtThree, oSqrtThree/)
n(6,1:3) = (/-oSqrtThree,-oSqrtThree, oSqrtThree/)
n(7,1:3) = (/-oSqrtThree, oSqrtThree, oSqrtThree/)
n(8,1:3) = (/-oSqrtThree, oSqrtThree, oSqrtThree/)
n(9,1:3) = (/-oSqrtThree, oSqrtThree, oSqrtThree/)
n(10,1:3)= (/ oSqrtThree,-oSqrtThree, oSqrtThree/)
n(11,1:3)= (/ oSqrtThree,-oSqrtThree, oSqrtThree/)
n(12,1:3)= (/ oSqrtThree,-oSqrtThree, oSqrtThree/)
!-----------------------------------------------------------------------
m(1,1:3) = (/-oSqrtTwo, zero , oSqrtTwo/)
m(2,1:3) = (/-oSqrtTwo, oSqrtTwo, zero /)
m(3,1:3) = (/ zero ,-oSqrtTwo, oSqrtTwo/)
m(4,1:3) = (/ zero , oSqrtTwo, oSqrtTwo/)
m(5,1:3) = (/-oSqrtTwo, oSqrtTwo, zero /)
m(6,1:3) = (/ oSqrtTwo, zero , oSqrtTwo/)
m(7,1:3) = (/ oSqrtTwo, zero , oSqrtTwo/)
m(8,1:3) = (/ oSqrtTwo, oSqrtTwo, zero /)
m(9,1:3) = (/ zero ,-oSqrtTwo, oSqrtTwo/)
m(10,1:3)= (/ zero , oSqrtTwo, oSqrtTwo/)
m(11,1:3)= (/ oSqrtTwo, oSqrtTwo, zero /)
m(12,1:3)= (/-oSqrtTwo, zero , oSqrtTwo/)
!-----------------------------------------------------------------------
do j=1,3
do i=1,3
do a=1,alpha
S(a,i,j)=m(a,i)*n(a,j)
enddo
enddo
enddo
!-----------------------------------------------------------------------
! Time greater than zero
!-----------------------------------------------------------------------
if(stateold(1,13).lt.small)then ! First step
!-----------------------------------------------------------------------
! Initializing the rotation tensor
!-----------------------------------------------------------------------
if (Txflag.eq.3)then
call RandomTexture(stateOld,nblock,nstatev)
elseif (Txflag.eq.2)then
!-----------------------------------------------------------------------
! Load orientations from initial conditions
!-----------------------------------------------------------------------
do km=1,nblock
phi1 = STATEOLD(km,1)*deg2rad
PHI = STATEOLD(km,2)*deg2rad
phi2 = STATEOLD(km,3)*deg2rad
!-----------------------------------------------------------------------
R(1,1) = cos(phi1)*cos(phi2)-sin(phi1)*sin(phi2)*cos(PHI)
R(1,2) = -cos(phi1)*sin(phi2)-sin(phi1)*cos(phi2)*cos(PHI)
R(1,3) = sin(phi1)*sin(PHI)
R(2,1) = sin(phi1)*cos(phi2)+cos(phi1)*sin(phi2)*cos(PHI)
R(2,2) = -sin(phi1)*sin(phi2)+cos(phi1)*cos(phi2)*cos(PHI)
R(2,3) = -cos(phi1)*sin(PHI)
R(3,1) = sin(phi2)*sin(PHI)
R(3,2) = cos(phi2)*sin(PHI)
R(3,3) = cos(PHI)
!-----------------------------------------------------------------------
a = 4
do j=1,3
do i=1,3
STATEOLD(km,a) = R(i,j)
a = a+1
enddo
enddo
enddo
else
!-----------------------------------------------------------------------
! Load orientation from material properties
!-----------------------------------------------------------------------
R(1,1) = cos(phi1)*cos(phi2)-sin(phi1)*sin(phi2)*cos(PHI)
R(1,2) = -cos(phi1)*sin(phi2)-sin(phi1)*cos(phi2)*cos(PHI)
R(1,3) = sin(phi1)*sin(PHI)
R(2,1) = sin(phi1)*cos(phi2)+cos(phi1)*sin(phi2)*cos(PHI)
R(2,2) = -sin(phi1)*sin(phi2)+cos(phi1)*cos(phi2)*cos(PHI)
R(2,3) = -cos(phi1)*sin(PHI)
R(3,1) = sin(phi2)*sin(PHI)
R(3,2) = cos(phi2)*sin(PHI)
R(3,3) = cos(PHI)
!-----------------------------------------------------------------------
a = 4
do j=1,3
do i=1,3
do km=1,nblock
STATEOLD(km,a) = R(i,j)
enddo
a = a+1
enddo
enddo
endif
!-----------------------------------------------------------------------
! Initializing the other state variables
!-----------------------------------------------------------------------
do km=1,nblock
STATEOLD(km,13:24) = tau0_c
STATEOLD(km,25) = zero
STATEOLD(km,27) = zero
#if SCMM_HYPO_DFLAG == 1 || SCMM_HYPO_DFLAG == 2
STATEOLD(km,29) = VVF0
STATEOLD(km,30) = one
#endif
enddo
endif
!-----------------------------------------------------------------------
! Loop over nblock integration points
!-----------------------------------------------------------------------
do km = 1, nblock
!-----------------------------------------------------------------------
! Defining state variables from last increment
!-----------------------------------------------------------------------
a = 4
do j=1,3
do i=1,3
R(i,j) = STATEOLD(km,a)
a = a+1
enddo
enddo
tau_c = STATEOLD(km,13:24)
gamma = STATEOLD(km,25)
PEQ = STATEOLD(km,27)
#if SCMM_HYPO_DFLAG == 1 || SCMM_HYPO_DFLAG == 2
VVF = STATEOLD(km,29)
isActive = nint(STATEOLD(km,30))
!-----------------------------------------------------------------------
! Check if integration point is active
!-----------------------------------------------------------------------
#ifdef SCMM_HYPO_EXPLICIT
if(isActive.eq.0)then
stressNew(km,1:6) = zero
STATENEW(km,1:nstatev) = STATEOLD(km,1:nstatev)
Dissipation(km) = zero
cycle ! Continue to next loop cycle
endif
#endif
#endif
!-----------------------------------------------------------------------
! Co-rotating the stress tensor
!-----------------------------------------------------------------------
sigs(1) = stressOld(km,1)
sigs(2) = stressOld(km,2)
sigs(3) = stressOld(km,3)
sigs(4) = stressOld(km,4)
sigs(5) = stressOld(km,5)
sigs(6) = stressOld(km,6)
!-----------------------------------------------------------------------
! Calculating the transpose of the rotation tensor
!-----------------------------------------------------------------------
call mtransp(R,RT)
!-----------------------------------------------------------------------
! Stress components, sigma_hat=R**T sigma R
!-----------------------------------------------------------------------
call vec2mat(sigs,xmat1)
call transform(xmat1,RT,R,xmat2)
call mat2vec(xmat2,sigma)
!-----------------------------------------------------------------------
! Calculating the effective stress sigma_eff=sigma/(1-VVF)
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 1
sigma = sigma/(one-VVF)
#endif
!-----------------------------------------------------------------------
! Calculating the strain and spin increments from
! the deformation gradient in the global coordinate system
!-----------------------------------------------------------------------
! Old deformation gradient, F
!-----------------------------------------------------------------------
Fold(1,1) = defgradOld(km,1)
Fold(2,2) = defgradOld(km,2)
Fold(3,3) = defgradOld(km,3)
Fold(1,2) = defgradOld(km,4)
Fold(2,3) = defgradOld(km,5)
Fold(3,1) = defgradOld(km,6)
Fold(2,1) = defgradOld(km,7)
Fold(3,2) = defgradOld(km,8)
Fold(1,3) = defgradOld(km,9)
!-----------------------------------------------------------------------
! New deformation gradient, F
!-----------------------------------------------------------------------
Fnew(1,1) = defgradNew(km,1)
Fnew(2,2) = defgradNew(km,2)
Fnew(3,3) = defgradNew(km,3)
Fnew(1,2) = defgradNew(km,4)
Fnew(2,3) = defgradNew(km,5)
Fnew(3,1) = defgradNew(km,6)
Fnew(2,1) = defgradNew(km,7)
Fnew(3,2) = defgradNew(km,8)
Fnew(1,3) = defgradNew(km,9)
call sinc(Fold,Fnew,dt,epsinc,spininc)
!-----------------------------------------------------------------------
! Begin the sub-stepping
!-----------------------------------------------------------------------
nsub = ceiling(sqrt(epsinc(1)**2+epsinc(2)**2+
+ epsinc(3)**2+two*epsinc(4)**2+
+ two*epsinc(5)**2+
+ two*epsinc(6)**2)/(critEps))
!-----------------------------------------------------------------------
epsinc = epsinc/nsub
spininc = spininc/nsub
dti = dt/nsub
Dissipation(km) = zero
!-----------------------------------------------------------------------
do k=1,nsub
!-----------------------------------------------------------------------
! Strain increments, depsilon_hat=R**T depsilon R
!-----------------------------------------------------------------------
call vec2mat(epsinc,xmat1)
call transform(xmat1,RT,R,xmat2)
call mat2vec(xmat2,depsilon)
!-----------------------------------------------------------------------
! Initialize plastic variables for this sub increment
!-----------------------------------------------------------------------
depsilon_p = zero
domega_p = zero
dgamma = zero
dtau_c = zero
iter = 0
gamma_old = gamma
PEQ_old = PEQ
!-----------------------------------------------------------------------
! Elastic predictor (Trial stress)
!-----------------------------------------------------------------------
sig_tr(1) = sigma(1)+C11*(depsilon(1))
+ +C12*(depsilon(2))
+ +C12*(depsilon(3))
sig_tr(2) = sigma(2)+C12*(depsilon(1))
+ +C11*(depsilon(2))
+ +C12*(depsilon(3))
sig_tr(3) = sigma(3)+C12*(depsilon(1))
+ +C12*(depsilon(2))
+ +C11*(depsilon(3))
sig_tr(4) = sigma(4)+two*C44*(depsilon(4))
sig_tr(5) = sigma(5)+two*C44*(depsilon(5))
sig_tr(6) = sigma(6)+two*C44*(depsilon(6))
sigma = sig_tr
!-----------------------------------------------------------------------
! Calculating resolved shear stress for the trial state
!-----------------------------------------------------------------------
do a=1,alpha
tau(a) = sigma(1)*S(a,1,1)+sigma(2)*S(a,2,2)+
+ sigma(3)*S(a,3,3)+sigma(4)*(S(a,1,2)+S(a,2,1))+
+ sigma(5)*(S(a,2,3)+S(a,3,2))+
+ sigma(6)*(S(a,3,1)+S(a,1,3))
enddo
#if SCMM_HYPO_DFLAG == 2
call calcTauEff(tau,sigma,VVF,aParam,q1,q2,tau_eff)
#endif
!-----------------------------------------------------------------------
! Calculate the yield function based on the trial state
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 2
call yieldfunction(tau_eff,tau_c,
. rhoParameter,mParameter,f)
#else
call yieldfunction(tau,tau_c,rhoParameter,mParameter,f)
#endif
!-----------------------------------------------------------------------
! Check yield criterion
!-----------------------------------------------------------------------
if (f.gt.zero)then
!-----------------------------------------------------------------------
! Return mapping (Cutting plane)
!-----------------------------------------------------------------------
do while ((abs(f).gt.tol).and.(iter.lt.maxIter))
iter = iter+1
!-----------------------------------------------------------------------
! Calculating gradients to the yield function
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 2
call yieldgradient(tau,tau_eff,sigma,tau_c,VVF,
. rhoParameter,mParameter,aParam,
. q1,q2,S,dfdtau,dfdtau_c,dfdsigma,
. dfdsigmaskew,dfdVVF)
#else
call yieldgradient(tau,tau_c,rhoParameter,mParameter,
. S,dfdtau,dfdtau_c,dfdsigma)
#endif
!-----------------------------------------------------------------------
! Calculating the work-hardening rate matrix
!-----------------------------------------------------------------------
#ifdef SCMM_HYPO_VOCE_ONLY
call VoceMatrix(q,theta1,tau1,theta2,tau2,gamma,hMatrix)
#elif defined SCMM_HYPO_KALIDINDI_ONLY
call KalidindiMatrix(q,h0,tau_s,am,tau_c,hMatrix)
#else
if(hflag.eq.1)then
call VoceMatrix(q,theta1,tau1,theta2,
. tau2,gamma,hMatrix)
else ! hflag=2 (have already checked if hflag is not equal to 1 or 2)
call KalidindiMatrix(q,h0,tau_s,am,
. tau_c,hMatrix)
endif
#endif
!-----------------------------------------------------------------------
! Calculate increment in plastic parameter deltaLambda
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 2
call RMAP(f,dfdtau,dfdtau_c,dfdsigma,VVF,dfdVVF,
. sigma,C11,C12,C44,hMatrix,dlambda)
#else
call RMAP(f,dfdtau,dfdtau_c,
. dfdsigma,C11,C12,C44,hMatrix,dlambda)
#endif
!-----------------------------------------------------------------------
! Update plastic slip dgamma(alpha)
!-----------------------------------------------------------------------
ddgamma = dlambda*dfdtau
dgamma = dgamma+ddgamma
!-----------------------------------------------------------------------
! Updating accumulated plastic shear strain
!-----------------------------------------------------------------------
gamma = gamma_old+
+ abs(dgamma(1))+abs(dgamma(2))+abs(dgamma(3))+
+ abs(dgamma(4))+abs(dgamma(5))+abs(dgamma(6))+
+ abs(dgamma(7))+abs(dgamma(8))+abs(dgamma(9))+
+ abs(dgamma(10))+abs(dgamma(11))+abs(dgamma(12))
!-----------------------------------------------------------------------
! Update plastic strain increment and plastic spin increment
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 2
depsilon_p(1) = depsilon_p(1)+
+ dlambda*dfdsigma(1)*(one-VVF)
depsilon_p(2) = depsilon_p(2)+
+ dlambda*dfdsigma(2)*(one-VVF)
depsilon_p(3) = depsilon_p(3)+
+ dlambda*dfdsigma(3)*(one-VVF)
depsilon_p(4) = depsilon_p(4)+
+ dlambda*dfdsigma(4)*(one-VVF)
depsilon_p(5) = depsilon_p(5)+
+ dlambda*dfdsigma(5)*(one-VVF)
depsilon_p(6) = depsilon_p(6)+
+ dlambda*dfdsigma(6)*(one-VVF)
!
domega_p(1) = domega_p(1)+
+ dlambda*dfdsigmaskew(1)*(one-VVF)
domega_p(2) = domega_p(2)+
+ dlambda*dfdsigmaskew(2)*(one-VVF)
domega_p(3) = domega_p(3)+
+ dlambda*dfdsigmaskew(3)*(one-VVF)
#else
do a=1,alpha
depsilon_p(1) = depsilon_p(1)+ddgamma(a)*S(a,1,1)
depsilon_p(2) = depsilon_p(2)+ddgamma(a)*S(a,2,2)
depsilon_p(3) = depsilon_p(3)+ddgamma(a)*S(a,3,3)
depsilon_p(4) = depsilon_p(4)+
+ half*ddgamma(a)*(S(a,1,2)+S(a,2,1))
depsilon_p(5) = depsilon_p(5)+
+ half*ddgamma(a)*(S(a,2,3)+S(a,3,2))
depsilon_p(6) = depsilon_p(6)+
+ half*ddgamma(a)*(S(a,3,1)+S(a,1,3))
!
domega_p(1) = domega_p(1)+
+ half*ddgamma(a)*(S(a,3,2)-S(a,2,3))
domega_p(2) = domega_p(2)+
+ half*ddgamma(a)*(S(a,1,3)-S(a,3,1))
domega_p(3) = domega_p(3)+
+ half*ddgamma(a)*(S(a,2,1)-S(a,1,2))
enddo
#endif
!-----------------------------------------------------------------------
! Equivalent von mises plastic strain
!-----------------------------------------------------------------------
PEQ = PEQ_old+sqrt(two*(depsilon_p(1)**2+
+ depsilon_p(2)**2+depsilon_p(3)**2+
+ two*depsilon_p(4)**2+
+ two*depsilon_p(5)**2+
+ two*depsilon_p(6)**2)/three)
!-----------------------------------------------------------------------
! Updating damage
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 2
call UpdateDamageHan(VVF,dfdsigma,dlambda)
if((VVF.ge.VVFC).or.(VVF.ge.one))then
VVF = min(VVFC,one)
isActive = 0
endif
#endif
!-----------------------------------------------------------------------
! Updating corotated stress tensor and resolved shear stress
!-----------------------------------------------------------------------
sigma(1) = sig_tr(1)+C11*(-depsilon_p(1))
+ +C12*(-depsilon_p(2))
+ +C12*(-depsilon_p(3))
sigma(2) = sig_tr(2)+C12*(-depsilon_p(1))
+ +C11*(-depsilon_p(2))
+ +C12*(-depsilon_p(3))
sigma(3) = sig_tr(3)+C12*(-depsilon_p(1))
+ +C12*(-depsilon_p(2))
+ +C11*(-depsilon_p(3))
sigma(4) = sig_tr(4)+two*C44*(-depsilon_p(4))
sigma(5) = sig_tr(5)+two*C44*(-depsilon_p(5))
sigma(6) = sig_tr(6)+two*C44*(-depsilon_p(6))
!-----------------------------------------------------------------------
do a=1,alpha
tau(a) = sigma(1)*S(a,1,1)+sigma(2)*S(a,2,2)+
+ sigma(3)*S(a,3,3)+sigma(4)*(S(a,1,2)+S(a,2,1))+
+ sigma(5)*(S(a,2,3)+S(a,3,2))+
+ sigma(6)*(S(a,3,1)+S(a,1,3))
enddo
#if SCMM_HYPO_DFLAG == 2
call calcTauEff(tau,sigma,VVF,aParam,q1,q2,tau_eff)
#endif
!-----------------------------------------------------------------------
! Updating critical resolved shear stresses
!-----------------------------------------------------------------------
#ifdef SCMM_HYPO_VOCE_ONLY
call VoceCCCP(q,theta1,tau1,theta2,
+ tau2,dfdtau,dlambda,gamma,tau_c)
#elif defined SCMM_HYPO_KALIDINDI_ONLY
call KalidindiCCCP(q,h0,tau_s,am,
+ dfdtau,dlambda,tau_c)
#else
if(hflag.eq.1)then
call VoceCCCP(q,theta1,tau1,theta2,
+ tau2,dfdtau,dlambda,gamma,tau_c)
else ! hflag=2 (have already checked if hflag is not equal to 1 or 2)
call KalidindiCCCP(q,h0,tau_s,am,
+ dfdtau,dlambda,tau_c)
endif
#endif
!-----------------------------------------------------------------------
! Update the yield function
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 2
call yieldfunction(tau_eff,tau_c,
. rhoParameter,mParameter,f)
#else
call yieldfunction(tau,tau_c,rhoParameter,mParameter,f)
#endif
enddo
if ((iter.ge.maxIter).and.(abs(f).gt.tol))then
#if defined SCMM_HYPO_STANDARD
call STDB_ABQERR(-3,'Maximum number of RMAP iterations'//
. ' reached. Maximum number of iterations: %I, abs(f) = %R',
. maxIter,abs(f),)
#elif defined SCMM_HYPO_EXPLICIT
call XPLB_ABQERR(-3,'Maximum number of RMAP iterations'//
. ' reached. Maximum number of iterations: %I, abs(f) = %R',
. maxIter,abs(f),)
#else
write(*,*) 'Maximum number of iterations: ',maxIter
write(*,*) 'abs(f) = ',abs(f)
error stop 'ERROR: Maximum number of RMAP iterations reached'
#endif
endif
!-----------------------------------------------------------------------
! Updating damage
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 1
call UpdateDamage(VVF,sigma,dgamma,q1,q2)
if((VVF.ge.VVFC).or.(VVF.ge.one))then
VVF = min(VVFC,one)
isActive = 0
endif
#endif
endif
!-----------------------------------------------------------------------
! Continue if step was elastic OR end of return map
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
! Approximating the dissipated energy by using tau at iter+1
!-----------------------------------------------------------------------
do a=1,alpha
#if SCMM_HYPO_DFLAG == 2
Dissipation(km) = Dissipation(km)+
. (one-VVF)*tau_eff(a)*dgamma(a)
#else
#if SCMM_HYPO_DFLAG == 1
Dissipation(km) = Dissipation(km)+
. (one-VVF)*tau(a)*dgamma(a)
#else
Dissipation(km) = Dissipation(km)+tau(a)*dgamma(a)
#endif
#endif
enddo
!-----------------------------------------------------------------------
! Calculating incremental elastic rotation in the global coordinate system
!-----------------------------------------------------------------------
xmat1(1,1) = zero
xmat1(1,2) = -domega_p(3)
xmat1(1,3) = domega_p(2)
xmat1(2,1) = domega_p(3)
xmat1(2,2) = zero
xmat1(2,3) = -domega_p(1)
xmat1(3,1) = -domega_p(2)
xmat1(3,2) = domega_p(1)
xmat1(3,3) = zero
!-----------------------------------------------------------------------
call transform(xmat1,R,RT,xmat2)
!-----------------------------------------------------------------------
domega_e(1) = spininc(1)-xmat2(3,2)
domega_e(2) = spininc(2)-xmat2(1,3)
domega_e(3) = spininc(3)-xmat2(2,1)
!-----------------------------------------------------------------------
! Updating the rotation tensor
!-----------------------------------------------------------------------
call updateR(domega_e,R)
call mtransp(R,RT)
!-----------------------------------------------------------------------
! End sub-stepping
!-----------------------------------------------------------------------
enddo! End sub-stepping
!-----------------------------------------------------------------------
! Calculating the Cauchy stress tensor from the effective stress
!-----------------------------------------------------------------------
#if SCMM_HYPO_DFLAG == 1
sigma = sigma*(one-VVF)
#endif
!-----------------------------------------------------------------------
! Transform the stress tensor back to the global coordinate system
!-----------------------------------------------------------------------
call vec2mat(sigma,xmat1)
call transform(xmat1,R,RT,xmat2)
call mat2vec(xmat2,sigs)
stressNew(km,1) = sigs(1)
stressNew(km,2) = sigs(2)
stressNew(km,3) = sigs(3)
stressNew(km,4) = sigs(4)
stressNew(km,5) = sigs(5)
stressNew(km,6) = sigs(6)
!-----------------------------------------------------------------------
! Updating output variables
!-----------------------------------------------------------------------
a = 4
do j=1,3
do i=1,3
STATENEW(km,a) = R(i,j)! Rotation tensor
a = a+1
enddo
enddo
! Critical resolved shear stresses/ Slip resistances
STATENEW(km,13:24) = tau_c
STATENEW(km,25) = gamma! Accumulated plastic strain
! Equivalent von Mises stress
STATENEW(km,26) = sqrt(half*((sigma(1)-sigma(2))**2
+ +(sigma(2)-sigma(3))**2
+ +(sigma(3)-sigma(1))**2)
+ +three*sigma(4)**2+three*sigma(5)**2
+ +three*sigma(6)**2)
STATENEW(km,27) = PEQ! Equivalent von mises plastic strain
STATENEW(km,28) = nsub! Number of sub steps
#if SCMM_HYPO_DFLAG == 1 || SCMM_HYPO_DFLAG == 2
STATENEW(km,29) = VVF ! Damage / void volume fraction
! Is the element active or should it be deleted (Abaqus status variable)
STATENEW(km,30) = isActive
#endif
!-----------------------------------------------------------------------
call euler(R,ang)
!-----------------------------------------------------------------------
STATENEW(km,1:3) = ang! Euler angles phi1, PHI, phi2
!-----------------------------------------------------------------------
! end loops
!-----------------------------------------------------------------------
enddo
!-----------------------------------------------------------------------
! End Subroutine
!-----------------------------------------------------------------------
return
end subroutine CCCP
!-----------------------------------------------------------------------
! End preprocessor definitions
!-----------------------------------------------------------------------
#endif
!-----------------------------------------------------------------------