-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathsvp_exact.py
executable file
·194 lines (158 loc) · 5.59 KB
/
svp_exact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
# -*- coding: utf-8 -*-
####
#
# Copyright (C) 2018-2021 Team G6K
#
# This file is part of G6K. G6K is free software:
# you can redistribute it and/or modify it under the terms of the
# GNU General Public License as published by the Free Software Foundation,
# either version 2 of the License, or (at your option) any later version.
#
# G6K is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with G6K. If not, see <http://www.gnu.org/licenses/>.
#
####
from __future__ import absolute_import
import re
import copy
import logging
import pickle as pickler
from collections import OrderedDict
from fpylll.util import gaussian_heuristic
from g6k.algorithms.ducas18 import ducas18
from g6k.algorithms.workout import workout
from g6k.siever import Siever
from g6k.utils.cli import parse_args, run_all, pop_prefixed_params
from g6k.utils.stats import SieveTreeTracer
from g6k.utils.util import (
load_svpchallenge_and_randomize,
load_svpchallenge_norm,
db_stats,
)
from g6k.utils.util import sanitize_params_names, print_stats, output_profiles
from fpylll import BKZ as fplll_bkz
from fpylll.tools.bkz_stats import dummy_tracer
from fpylll import Enumeration, EnumerationError
import six
from six.moves import range
GRADIENT_BLOCKSIZE = 31
NPS = 60 * [2.0 ** 29] + 5 * [2.0 ** 27] + 5 * [2.0 ** 26] + 1000 * [2.0 ** 25]
# Re-implement bkz2.svp_reduction, with a precise radius goal rather than success proba
def svp_enum(bkz, params, goal):
n = bkz.M.d
r = [bkz.M.get_r(i, i) for i in range(0, n)]
gh = gaussian_heuristic(r)
rerandomize = False
while bkz.M.get_r(0, 0) > goal:
if rerandomize:
bkz.randomize_block(0, n)
bkz.svp_preprocessing(0, n, params)
strategy = params.strategies[n]
radius = goal
pruning = strategy.get_pruning(goal, gh)
try:
enum_obj = Enumeration(bkz.M)
max_dist, solution = enum_obj.enumerate(
0, n, radius, 0, pruning=pruning.coefficients
)[0]
bkz.svp_postprocessing(0, n, solution, tracer=dummy_tracer)
rerandomize = False
except EnumerationError:
rerandomize = True
bkz.lll_obj()
return
def svp_kernel(arg0, params=None, seed=None):
# Pool.map only supports a single parameter
if params is None and seed is None:
n, params, seed = arg0
else:
n = arg0
params = copy.copy(params)
challenge_seed = params.pop("challenge_seed")
alg = params.pop("svp/alg")
workout_params = pop_prefixed_params("workout/", params)
pump_params = pop_prefixed_params("pump/", params)
goal_r0 = 1.001 * load_svpchallenge_norm(n, s=challenge_seed)
A, bkz = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed)
g6k = Siever(A, params, seed=seed)
tracer = SieveTreeTracer(g6k, root_label=("svp-exact", n), start_clocks=True)
if alg == "enum":
assert len(workout_params) + len(pump_params) == 0
bkz_params = fplll_bkz.Param(
block_size=n,
max_loops=1,
strategies=fplll_bkz.DEFAULT_STRATEGY,
flags=fplll_bkz.GH_BND,
)
svp_enum(bkz, bkz_params, goal_r0)
flast = 0
elif alg == "duc18":
assert len(workout_params) + len(pump_params) == 0
flast = ducas18(g6k, tracer, goal=goal_r0)
elif alg == "workout":
flast = workout(
g6k,
tracer,
0,
n,
goal_r0=goal_r0,
pump_params=pump_params,
**workout_params
)
else:
raise ValueError("Unrecognized algorithm for SVP")
r0 = bkz.M.get_r(0, 0) if alg == "enum" else g6k.M.get_r(0, 0)
if r0 > goal_r0:
raise ValueError("Did not reach the goal")
if 1.002 * r0 < goal_r0:
raise ValueError(
"Found a vector shorter than the goal for n=%d s=%d." % (n, challenge_seed)
)
tracer.exit()
stat = tracer.trace
stat.data["flast"] = flast
return stat
def svp():
"""
Run a progressive until exact-SVP is solved.
The exact-SVP length must have been priorly determined using ./svp_exact_find_norm.py
"""
description = svp.__doc__
args, all_params = parse_args(description, challenge_seed=0, svp__alg="workout")
stats = run_all(
svp_kernel,
list(all_params.values()),
lower_bound=args.lower_bound,
upper_bound=args.upper_bound,
step_size=args.step_size,
trials=args.trials,
workers=args.workers,
seed=args.seed,
)
inverse_all_params = OrderedDict([(v, k) for (k, v) in six.iteritems(all_params)])
stats = sanitize_params_names(stats, inverse_all_params)
fmt = "{name:50s} :: n: {n:2d}, cputime {cputime:7.4f}s, walltime: {walltime:7.4f}s, flast: {flast:3.2f}, |db|: 2^{avg_max:.2f}"
profiles = print_stats(
fmt,
stats,
("cputime", "walltime", "flast", "avg_max"),
extractf={"avg_max": lambda n, params, stat: db_stats(stat)[0]},
)
output_profiles(args.profile, profiles)
if args.pickle:
pickler.dump(
stats,
open(
"svp-exact-%d-%d-%d-%d.sobj"
% (args.lower_bound, args.upper_bound, args.step_size, args.trials),
"wb",
),
)
if __name__ == "__main__":
svp()