forked from DataXujing/YOLO-v5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5_trt.py
426 lines (374 loc) · 15.8 KB
/
yolov5_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
An example that uses TensorRT's Python api to make inferences.
"""
import ctypes
import os
import random
import sys
import threading
import time
import cv2
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
import torch
import torchvision
INPUT_W = 640
INPUT_H = 640
CONF_THRESH = 0.25
IOU_THRESHOLD = 0.45
PROB_THRESH = 0.65
id2label = {
0:"normal", #A
1:"normal", #B
2:"normal", #C
3:"normal", #D
4:"normal", #E
5:"early_esophageal_cancer", #F
6:"early_gastric_cancer", #G
7:"normal", #N1
8:"normal", #N2
9:"normal", #N3
10:"normal", #N4
11:"normal", #N5
12:"normal", #N6
13:"normal", #N7
14:"normal", #N8
15:"normal", #N9
16:"normal", #N10
}
# 画框
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
"""
description: Plots one bounding box on image img,
this function comes from YoLov5 project.
param:
x: a box likes [x1,y1,x2,y2]
img: a opencv image object
color: color to draw rectangle, such as (0,255,0)
label: str
line_thickness: int
return:
no return
"""
# if not os.path.exists("detect_res"):
# os.makdedirs("detect_res")
tl = (
line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1
) # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
img,
label,
(c1[0], c1[1] - 2),
0,
tl / 3,
[225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA,
)
# cv2.imwrite(os.path.join(save_path,file_name),img)
class YoLov5TRT(object):
"""
description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops.
"""
def __init__(self, engine_file_path):
# Create a Context on this device,
self.cfx = cuda.Device(0).make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(TRT_LOGGER)
# <--------------------读取序列化引擎
with open(engine_file_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
# Store
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
def infer(self, input_image_path):
threading.Thread.__init__(self)
# Make self the active context, pushing it on top of the context stack.
self.cfx.push()
# Restore
stream = self.stream
context = self.context
engine = self.engine
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
# # <-----------------模型的前处理,图像处理
input_image, image_raw, origin_h, origin_w = self.preprocess_image_0(
input_image_path
)
# Copy input image to host buffer
np.copyto(host_inputs[0], input_image.ravel())
# Transfer input data to the GPU.
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
# #<-----------基于序列化的引擎,开始推断
start = time.time()
context.execute_async(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
# Synchronize the stream
stream.synchronize()
# Remove any context from the top of the context stack, deactivating it.
self.cfx.pop()
# Here we use the first row of output in that batch_size = 1
# <---------------得到推断结果
output = host_outputs[0]
end = time.time()
print(output.shape)
# <--------------后处理
result_boxes, result_scores, result_classid = self.post_process(
output, origin_h, origin_w
)
print("waste_time: {}".format(end-start))
# Draw rectangles and labels on the original image
file_name = input_image_path.split("/")[-1]
for i in range(len(result_boxes)):
box = result_boxes[i]
if result_scores[i] <= PROB_THRESH:
continue;
if not int(result_classid[i]) in [5,6]:
continue;
plot_one_box(
box,
image_raw,
label="{}:{:.2f}".format(
id2label[int(result_classid[i])], result_scores[i]
),
)
parent, filename = os.path.split(input_image_path)
if not os.path.exists("detect_res"):
os.makedirs("detect_res")
save_name = os.path.join("detect_res", filename)
# Save image
cv2.imwrite(save_name, image_raw)
def destroy(self):
# Remove any context from the top of the context stack, deactivating it.
self.cfx.pop()
def preprocess_image(self, input_image_path):
"""
description: Read an image from image path, convert it to RGB,
resize and pad it to target size, normalize to [0,1],
transform to NCHW format.
param:
input_image_path: str, image path
return:
image: the processed image
image_raw: the original image
h: original height
w: original width
"""
image_raw = cv2.imread(input_image_path) # 1.opencv读入图片
h, w, c = image_raw.shape
# Calculate widht and height and paddings
r_w = INPUT_W / w # INPUT_W=INPUT_H=640 # 4.计算宽高缩放的倍数 r_w,r_h
r_h = INPUT_H / h
if r_h > r_w: # 5.如果原图的高小于宽(长边),则长边缩放到640,短边按长边缩放比例缩放
tw = INPUT_W
th = int(r_w * h)
dw = INPUT_W - tw
dh = INPUT_H - th
dw, dh = np.mod(dw,32),np.mod(dh,32)
dw /= 2 # divide padding into 2 sides
dh /= 2
else:
tw = int(r_h * w)
th = INPUT_H
dw = INPUT_W - tw
dh = INPUT_H - th
dw, dh = np.mod(dw,32),np.mod(dh,32)
dw /= 2 # divide padding into 2 sides
dh /= 2
# Resize the image with long side while maintaining ratio
image = cv2.resize(image_raw, (tw, th),interpolation=cv2.INTER_LINEAR) # 6.图像resize,按照cv2.INTER_LINEAR方法
# Pad the short side with (128,128,128)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
image = cv2.copyMakeBorder(
# image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128)
image, top, bottom, left, right, cv2.BORDER_CONSTANT, (114, 114, 114)
) # image:图像, ty1, ty2.tx1,tx2: 相应方向上的边框宽度,添加的边界框像素值为常数,value填充的常数值
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 3. BGR2RGB
image = image.astype(np.float32) # 7.unit8-->float
# Normalize to [0,1]
image /= 255.0 # 8. 逐像素点除255.0
# HWC to CHW format:
image = np.transpose(image, [2, 0, 1]) # 9. HWC2CHW
# CHW to NCHW format
image = np.expand_dims(image, axis=0) # 10.CWH2NCHW
# Convert the image to row-major order, also known as "C order":
image = np.ascontiguousarray(image) # 11.ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快
return image, image_raw, h, w # 处理后的图像,原图, 原图的h,w
def preprocess_image_0(self, input_image_path):
"""
description: Read an image from image path, convert it to RGB,
resize and pad it to target size, normalize to [0,1],
transform to NCHW format.
param:
input_image_path: str, image path
return:
image: the processed image
image_raw: the original image
h: original height
w: original width
"""
image_raw = cv2.imread(input_image_path) # 1.opencv读入图片
h, w, c = image_raw.shape # 2.记录图片大小
image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) # 3. BGR2RGB
# Calculate widht and height and paddings
r_w = INPUT_W / w # INPUT_W=INPUT_H=640 # 4.计算宽高缩放的倍数 r_w,r_h
r_h = INPUT_H / h
if r_h > r_w: # 5.如果原图的高小于宽(长边),则长边缩放到640,短边按长边缩放比例缩放
tw = INPUT_W
th = int(r_w * h)
tx1 = tx2 = 0
ty1 = int((INPUT_H - th) / 2) # ty1=(640-短边缩放的长度)/2 ,这部分是YOLOv5为加速推断而做的一个图像缩放算法
ty2 = INPUT_H - th - ty1 # ty2=640-短边缩放的长度-ty1
else:
tw = int(r_h * w)
th = INPUT_H
tx1 = int((INPUT_W - tw) / 2)
tx2 = INPUT_W - tw - tx1
ty1 = ty2 = 0
# Resize the image with long side while maintaining ratio
image = cv2.resize(image, (tw, th),interpolation=cv2.INTER_LINEAR) # 6.图像resize,按照cv2.INTER_LINEAR方法
# Pad the short side with (128,128,128)
image = cv2.copyMakeBorder(
# image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128)
image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (114, 114, 114)
) # image:图像, ty1, ty2.tx1,tx2: 相应方向上的边框宽度,添加的边界框像素值为常数,value填充的常数值
image = image.astype(np.float32) # 7.unit8-->float
# Normalize to [0,1]
image /= 255.0 # 8. 逐像素点除255.0
# HWC to CHW format:
image = np.transpose(image, [2, 0, 1]) # 9. HWC2CHW
# CHW to NCHW format
image = np.expand_dims(image, axis=0) # 10.CWH2NCHW
# Convert the image to row-major order, also known as "C order":
image = np.ascontiguousarray(image) # 11.ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快
return image, image_raw, h, w # 处理后的图像,原图, 原图的h,w
def xywh2xyxy(self, origin_h, origin_w, x):
"""
description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
param:
origin_h: height of original image
origin_w: width of original image
x: A boxes tensor, each row is a box [center_x, center_y, w, h]
return:
y: A boxes tensor, each row is a box [x1, y1, x2, y2]
"""
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
r_w = INPUT_W / origin_w
r_h = INPUT_H / origin_h
if r_h > r_w:
y[:, 0] = x[:, 0] - x[:, 2] / 2 #x1
y[:, 2] = x[:, 0] + x[:, 2] / 2 #x2
y[:, 1] = x[:, 1] - x[:, 3] / 2 - (INPUT_H - r_w * origin_h) / 2 # y1
y[:, 3] = x[:, 1] + x[:, 3] / 2 - (INPUT_H - r_w * origin_h) / 2 # y2
y /= r_w
else:
y[:, 0] = x[:, 0] - x[:, 2] / 2 - (INPUT_W - r_h * origin_w) / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2 - (INPUT_W - r_h * origin_w) / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
y /= r_h
return y
def post_process(self, output, origin_h, origin_w):
"""
description: postprocess the prediction
param:
output: A tensor likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...]
origin_h: height of original image
origin_w: width of original image
return:
result_boxes: finally boxes, a boxes tensor, each row is a box [x1, y1, x2, y2]
result_scores: finally scores, a tensor, each element is the score correspoing to box
result_classid: finally classid, a tensor, each element is the classid correspoing to box
"""
# Get the num of boxes detected
num = int(output[0]) # detect的box的个数
# Reshape to a two dimentional ndarray
pred = np.reshape(output[1:], (-1, 6))[:num, :] #[[cx,cy,w,h,conf,cls_id],[cx,cy,w,h,conf,cls_id],...]
# to a torch Tensor
pred = torch.Tensor(pred).cuda()
# Get the boxes
boxes = pred[:, :4] # [[cx,cy,w,h],[cx,cy,w,h],...]
# Get the scores
scores = pred[:, 4] #[conf,conf,....]
# Get the classid
classid = pred[:, 5] # [cls_id,cls_id,...]
# Choose those boxes that score > CONF_THRESH
si = scores > CONF_THRESH
boxes = boxes[si, :]
scores = scores[si]
classid = classid[si]
# Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]
boxes = self.xywh2xyxy(origin_h, origin_w, boxes)
# Do nms
indices = torchvision.ops.nms(boxes, scores, iou_threshold=IOU_THRESHOLD).cpu() # NMS
result_boxes = boxes[indices, :].cpu()
result_scores = scores[indices].cpu()
result_classid = classid[indices].cpu()
return result_boxes, result_scores, result_classid
class myThread(threading.Thread):
def __init__(self, func, args):
threading.Thread.__init__(self)
self.func = func
self.args = args
def run(self):
self.func(*self.args)
if __name__ == "__main__":
# load custom plugins
PLUGIN_LIBRARY = "build/libmyplugins.so"
ctypes.CDLL(PLUGIN_LIBRARY)
engine_file_path = "build/yolov5x.engine"
# a YoLov5TRT instance
yolov5_wrapper = YoLov5TRT(engine_file_path)
# from https://github.com/ultralytics/yolov5/tree/master/inference/images
files = os.listdir('test')
input_image_paths = [os.path.join('test',file) for file in files]
for input_image_path in input_image_paths:
# create a new thread to do inference
thread1 = myThread(yolov5_wrapper.infer, [input_image_path])
thread1.start()
thread1.join()
# destroy the instance
yolov5_wrapper.destroy()