-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconvRunner.cu
187 lines (186 loc) · 16.8 KB
/
convRunner.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include "cuda.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <opencv2/opencv.hpp>
#include "convolution.h"
#include "helpers.h"
using namespace std;
using namespace cv;
void testConvolution()
{
cv::Mat img = getRawImage("./Lena.pgm");
img.convertTo(img, CV_32FC1);
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 2, 2, "global_only", true, "results/kernel2x2_size2x2_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 3, 2, "global_only", true, "results/kernel2x2_size3x3_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 4, 2, "global_only", true, "results/kernel2x2_size4x4_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 2, "global_only", true, "results/kernel2x2_size5x5_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 2, "global_only", true, "results/kernel2x2_size6x6_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 2, "global_only", true, "results/kernel2x2_size7x7_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 8, 2, "global_only", true, "results/kernel2x2_size8x8_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 3, 3, "global_only", true, "results/kernel3x3_size3x3_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 4, 3, "global_only", true, "results/kernel3x3_size4x4_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 3, "global_only", true, "results/kernel3x3_size5x5_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 3, "global_only", true, "results/kernel3x3_size6x6_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 3, "global_only", true, "results/kernel3x3_size7x7_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 8, 3, "global_only", true, "results/kernel3x3_size8x8_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 9, 3, "global_only", true, "results/kernel3x3_size9x9_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 4, 4, "global_only", true, "results/kernel4x4_size4x4_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 4, "global_only", true, "results/kernel4x4_size5x5_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 4, "global_only", true, "results/kernel4x4_size6x6_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 4, "global_only", true, "results/kernel4x4_size7x7_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 8, 4, "global_only", true, "results/kernel4x4_size8x8_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 9, 4, "global_only", true, "results/kernel4x4_size9x9_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 10, 4, "global_only", true, "results/kernel4x4_size10x10_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 5, "global_only", true, "results/kernel5x5_size5x5_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 5, "global_only", true, "results/kernel5x5_size6x6_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 5, "global_only", true, "results/kernel5x5_size7x7_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 8, 5, "global_only", true, "results/kernel5x5_size8x8_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 9, 5, "global_only", true, "results/kernel5x5_size9x9_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 10, 5, "global_only", true, "results/kernel5x5_size10x10_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 11, 5, "global_only", true, "results/kernel5x5_size11x11_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 6, "global_only", true, "results/kernel6x6_size6x6_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 6, "global_only", true, "results/kernel6x6_size7x7_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 8, 6, "global_only", true, "results/kernel6x6_size8x8_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 9, 6, "global_only", true, "results/kernel6x6_size9x9_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 10, 6, "global_only", true, "results/kernel6x6_size10x10_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 11, 6, "global_only", true, "results/kernel6x6_size11x11_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 12, 6, "global_only", true, "results/kernel6x6_size12x12_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 7, "global_only", true, "results/kernel7x7_size7x7_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 8, 7, "global_only", true, "results/kernel7x7_size8x8_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 9, 7, "global_only", true, "results/kernel7x7_size9x9_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 10, 7, "global_only", true, "results/kernel7x7_size10x10_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 11, 7, "global_only", true, "results/kernel7x7_size11x11_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 12, 7, "global_only", true, "results/kernel7x7_size12x12_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 13, 7, "global_only", true, "results/kernel7x7_size13x13_global_only.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 2, 2, "global_register", true, "results/kernel2x2_size2x2_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 3, 2, "global_register", true, "results/kernel2x2_size3x3_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 4, 2, "global_register", true, "results/kernel2x2_size4x4_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 2, "global_register", true, "results/kernel2x2_size5x5_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 2, "global_register", true, "results/kernel2x2_size6x6_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 2, "global_register", true, "results/kernel2x2_size7x7_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 3, 3, "global_register", true, "results/kernel3x3_size3x3_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 4, 3, "global_register", true, "results/kernel3x3_size4x4_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 3, "global_register", true, "results/kernel3x3_size5x5_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 3, "global_register", true, "results/kernel3x3_size6x6_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 3, "global_register", true, "results/kernel3x3_size7x7_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 4, 4, "global_register", true, "results/kernel4x4_size4x4_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 4, "global_register", true, "results/kernel4x4_size5x5_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 4, "global_register", true, "results/kernel4x4_size6x6_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 4, "global_register", true, "results/kernel4x4_size7x7_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 5, 5, "global_register", true, "results/kernel5x5_size5x5_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 5, "global_register", true, "results/kernel5x5_size6x6_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 5, "global_register", true, "results/kernel5x5_size7x7_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 6, 6, "global_register", true, "results/kernel6x6_size6x6_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 6, "global_register", true, "results/kernel6x6_size7x7_global_register.png");
convolutionWrapper((float*)&img.data[0], img.cols, img.rows, 7, 7, "global_register", true, "results/kernel7x7_size7x7_global_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 2, 2, "texCache_only", true, "results/kernel2x2_size2x2_texCache_only.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 3, 3, "texCache_only", true, "results/kernel3x3_size3x3_texCache_only.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 4, 4, "texCache_only", true, "results/kernel4x4_size4x4_texCache_only.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 5, 5, "texCache_only", true, "results/kernel5x5_size5x5_texCache_only.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 6, 6, "texCache_only", true, "results/kernel6x6_size6x6_texCache_only.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 7, "texCache_only", true, "results/kernel7x7_size7x7_texCache_only.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 2, 2, "texCache_register", true, "results/kernel2x2_size2x2_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 3, 2, "texCache_register", true, "results/kernel2x2_size3x3_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 4, 2, "texCache_register", true, "results/kernel2x2_size4x4_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 5, 2, "texCache_register", true, "results/kernel2x2_size5x5_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 6, 2, "texCache_register", true, "results/kernel2x2_size6x6_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 2, "texCache_register", true, "results/kernel2x2_size7x7_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 3, 3, "texCache_register", true, "results/kernel3x3_size3x3_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 4, 3, "texCache_register", true, "results/kernel3x3_size4x4_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 5, 3, "texCache_register", true, "results/kernel3x3_size5x5_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 6, 3, "texCache_register", true, "results/kernel3x3_size6x6_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 3, "texCache_register", true, "results/kernel3x3_size7x7_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 4, 4, "texCache_register", true, "results/kernel4x4_size4x4_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 5, 4, "texCache_register", true, "results/kernel4x4_size5x5_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 6, 4, "texCache_register", true, "results/kernel4x4_size6x6_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 4, "texCache_register", true, "results/kernel4x4_size7x7_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 5, 5, "texCache_register", true, "results/kernel5x5_size5x5_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 6, 5, "texCache_register", true, "results/kernel5x5_size6x6_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 5, "texCache_register", true, "results/kernel5x5_size7x7_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 6, 6, "texCache_register", true, "results/kernel6x6_size6x6_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 6, "texCache_register", true, "results/kernel6x6_size7x7_texCache_register.png");
convolutionWrapper_texCache((float*)&img.data[0], img.cols, img.rows, 7, 7, "texCache_register", true, "results/kernel7x7_size7x7_texCache_register.png");
}
void testConvolution_withDummyImg(int height, int width)
{
float* img = getDummyImg(height, width);
FILE * pFile = fopen("perf.txt", "w");
fprintf(pFile, "kernelSize amountToLoad memoryScheme responseTime\n");
int nRuns = 10;
float responseTime = 0;
responseTime = convolutionWrapper(img, width, height, 3, 3, "global_register", false); //warmup
printf("memoryScheme = %s \n", "global_only");
for(int kernelSize=2; kernelSize<8; kernelSize++)
{
for(int sqrtConvsPerThread=1; sqrtConvsPerThread<8; sqrtConvsPerThread++)
{
int amountToLoad = sqrtConvsPerThread+kernelSize-1; //actually, prefetching nothing in this version
responseTime = 0;
for(int i=0; i<nRuns; i++)
{
float tmpTime = convolutionWrapper(img, width, height, amountToLoad, kernelSize, "global_only", false);
responseTime += tmpTime;
}
responseTime = responseTime/nRuns;
fprintf(pFile, "%d, %d, %s, %f \n", kernelSize, amountToLoad, "global_only", responseTime);
printf("kernelSize = %d. amountToLoad = %d. time per Convolution = %f seconds \n", kernelSize, amountToLoad, responseTime);
cudaDeviceSynchronize();
}
printf("\n");
}
printf("memoryScheme = %s \n", "global_register");
for(int kernelSize=2; kernelSize<8; kernelSize++)
{
for(int amountToLoad=kernelSize; amountToLoad<8; amountToLoad++)
{
responseTime = 0;
for(int i=0; i<nRuns; i++)
{
float tmpTime = convolutionWrapper(img, width, height, amountToLoad, kernelSize, "global_register", false);
responseTime += tmpTime;
}
responseTime = responseTime/nRuns;
fprintf(pFile, "%d, %d, %s, %f \n", kernelSize, amountToLoad, "global_register", responseTime);
printf("kernelSize = %d. amountToLoad = %d. time per Convolution = %f seconds \n", kernelSize, amountToLoad, responseTime);
cudaDeviceSynchronize();
}
printf("\n");
}
printf("memoryScheme = %s \n", "texCache_only");
for(int kernelSize=2; kernelSize<8; kernelSize++)
{
int amountToLoad = kernelSize;
responseTime = 0;
for(int i=0; i<nRuns; i++)
{
float tmpTime = convolutionWrapper_texCache(img, width, height, amountToLoad, kernelSize, "texCache_only", false);
responseTime += tmpTime;
}
responseTime = responseTime/nRuns;
fprintf(pFile, "%d, %d, %s, %f \n", kernelSize, amountToLoad, "texCache_only", responseTime);
printf("kernelSize = %d. amountToLoad = %d. time per Convolution = %f seconds \n", kernelSize, amountToLoad, responseTime);
cudaDeviceSynchronize();
printf("\n");
}
printf("memoryScheme = %s \n", "texCache_register");
for(int kernelSize=2; kernelSize<8; kernelSize++)
{
for(int amountToLoad=kernelSize; amountToLoad<8; amountToLoad++)
{
responseTime = 0;
for(int i=0; i<nRuns; i++)
{
float tmpTime = convolutionWrapper_texCache(img, width, height, amountToLoad, kernelSize, "texCache_register", false);
responseTime += tmpTime;
}
responseTime = responseTime/nRuns;
fprintf(pFile, "%d, %d, %s, %f \n", kernelSize, amountToLoad, "texCache_register", responseTime);
printf("kernelSize = %d. amountToLoad = %d. time per Convolution = %f seconds \n", kernelSize, amountToLoad, responseTime);
cudaDeviceSynchronize();
}
printf("\n");
}
fclose(pFile);
}