forked from NVIDIA-Merlin/HugeCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdump.py
232 lines (175 loc) · 8.77 KB
/
dump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#
# Copyright (c) 2020, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import struct
import os
import numpy as np
import json
class DumpToTF(object):
def __init__(self, sparse_model_names, dense_model_name,
model_json, non_training_params_json = None):
self.sparse_model_names = sparse_model_names # list of strings
self.dense_model_name = dense_model_name # string
self.model_json = model_json # json file of the whole model
self.non_training_params_json = non_training_params_json # non training params
self.model_content = None
self.embedding_layers = None
self.dense_layers = None
self.gpus = [0]
self.key_type = 'I32' # {'I64', 'I32'}, default is 'I32'
self.key_type_map = {"I32": ["I", 4], "I64": ["q", 8]}
self.parse_json()
self.offset = 0
def parse_json(self):
"""
parse the model json file to get the layers of the whole model.
save in a list.
then parse the non training params json file. to get the non-training-parameters.
#returns:
[embedding_layer, dense_layer0, dense_layer1, ...],
[non-training-params]
"""
print("[INFO] begin to parse model json file: %s" %self.model_json)
try:
with open(self.model_json, 'r') as model_json:
self.model_content = json.load(model_json)
self.gpus = self.model_content["solver"]["gpu"]
key_type = self.model_content["solver"].get("input_key_type")
if key_type is not None:
self.key_type = key_type
layers = self.model_content["layers"]
# embedding_layers
self.embedding_layers = []
for index in range(1, len(layers)):
if layers[index]["type"] not in ["DistributedSlotSparseEmbeddingHash",
"LocalizedSlotSparseEmbeddingHash"]:
break
else:
self.embedding_layers.append(layers[index])
#dense layers
self.dense_layers = layers[1 + len(self.embedding_layers): ]
except BaseException as error:
print(error)
def parse_embedding(self):
"""
get one embedding table at a time.
"""
if self.model_content is None:
self.parse_json()
for index, layer in enumerate(self.embedding_layers):
print("[INFO] begin to parse embedding weights: %s" %layer["name"])
each_key_size = 0
layer_type = layer["type"]
embedding_vec_size = layer["sparse_embedding_hparam"]["embedding_vec_size"]
max_vocab_size_per_gpu = layer["sparse_embedding_hparam"]["max_vocabulary_size_per_gpu"]
vocabulary_size = max_vocab_size_per_gpu * len(self.gpus)
if layer_type == "DistributedSlotSparseEmbeddingHash":
# sizeof(TypeHashKey) + sizeof(float) * embedding_vec_size
each_key_size = self.key_type_map[self.key_type][1] + 4 * embedding_vec_size
elif layer_type == "LocalizedSlotSparseEmbeddingHash":
# sizeof(TypeHashKey) + sizeof(TypeHashValueIndex) + sizeof(float) * embedding_vec_size
each_key_size = self.key_type_map[self.key_type][1] + self.key_type_map[self.key_type][1] + 4 * embedding_vec_size
embedding_table = np.zeros(shape=(vocabulary_size, embedding_vec_size), dtype=np.float32)
with open(self.sparse_model_names[index], 'rb') as file:
try:
while True:
buffer = file.read(each_key_size)
if len(buffer) == 0:
break
if layer_type == "DistributedSlotSparseEmbeddingHash":
key = struct.unpack(self.key_type_map[self.key_type][0], buffer[0: self.key_type_map[self.key_type][1]])
values = struct.unpack(str(embedding_vec_size) + "f", buffer[self.key_type_map[self.key_type][1]: ])
elif layer_type == "LocalizedSlotSparseEmbeddingHash":
key, slot_id = struct.unpack("2" + self.key_type_map[self.key_type][0],
buffer[0: 2*self.key_type_map[self.key_type][1]])
values = struct.unpack(str(embedding_vec_size) + "f", buffer[self.key_type_map[self.key_type][1]: ])
embedding_table[key] = values
except BaseException as error:
print(error)
yield layer["name"], embedding_table
def parse_dense(self, layer_bytes, layer_type, **kwargs):
"""
get one layer weights at a time.
"""
if self.model_content is None:
self.parse_json()
self.offset = 0
with open(self.dense_model_name, 'rb') as file:
print("[INFO] begin to parse dense weights: %s" %layer_type)
file.seek(self.offset, 0)
buffer = file.read(layer_bytes)
if layer_type == "BatchNorm":
# TODO
pass
elif layer_type == "InnerProduct":
in_feature = kwargs["in_feature"]
out_feature = kwargs["out_feature"]
weight = struct.unpack(str(in_feature * out_feature) + "f", buffer[ : in_feature * out_feature * 4])
bias = struct.unpack(str(out_feature) + "f", buffer[in_feature * out_feature * 4 : ])
weight = np.reshape(np.float32(weight), newshape=(in_feature, out_feature))
bias = np.reshape(np.float32(bias), newshape=(1, out_feature))
self.offset += layer_bytes
return weight, bias
elif layer_type == "MultiCross":
vec_length = kwargs["vec_length"]
num_layers = kwargs["num_layers"]
weights = []
biases = []
each_layer_bytes = layer_bytes // num_layers
for i in range(num_layers):
weight = struct.unpack(str(vec_length) + "f", buffer[i*each_layer_bytes : i*each_layer_bytes + vec_length * 4])
bias = struct.unpack(str(vec_length) + "f", buffer[i*each_layer_bytes + vec_length * 4 : (i+1)*each_layer_bytes])
weights.append(np.reshape(np.float32(weight), newshape=(1, len(weight))))
biases.append(np.reshape(np.float32(bias), newshape=(1, len(bias))))
self.offset += layer_bytes
return weights, biases
elif layer_type == "Multiply":
# TODO
pass
def read_dense_complete(self):
if self.offset == os.path.getsize(self.dense_model_name):
print("[INFO] all dense weights has been parsed.")
else:
print("[INFO] not all dense weights has been parsed.")
def build_graph(self):
"""
build computing-graph with tf according to model json file.
"""
pass
def save_to_checkpoint(self):
"""
save the computing-graph with the loading weights into a tf checkpoint.
"""
pass
def get_key_type(self):
return self.key_type
if __name__ == "__main__":
samples_dir = r'/workspace/hugectr/samples/'
model_json = os.path.join(samples_dir, r'dcn/dcn.json')
model_path = r'./hugectr_model_file/'
sparse_model_names = [os.path.join(model_path, r'dcn_model0_sparse_2000.model')]
dense_model_name = os.path.join(model_path, r'dcn_model_dense_2000.model')
test_dump = DumpToTF(sparse_model_names = sparse_model_names,
dense_model_name = dense_model_name,
model_json = model_json,
non_training_params_json = None)
embeddings = test_dump.parse_embedding().__next__()
print(embeddings)
# name, weights = embeddings.__next__()
# print(name)
# print(weights)
# for name, weights in test_dump.parse_embedding():
# print(name)
# for row in range(weights.shape[0]):
# print(row, " : ", weights[row])