-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathKernelPCA.py
95 lines (82 loc) · 3.11 KB
/
KernelPCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
# 线性核 与 sklearn 结果一致
# 其他核都与sklearn结果不一致!!! 还没找到原因
class KernelPCA:
def __init__(self,d_=2,kernel='linear',gamma=None,coef0=1.,degress=3):
self.d_=d_
self.W=None
self.mean_x=None
self.V=None
self.kernel=kernel
self.coef0=coef0
self.degress=degress
if gamma is None:
self.gamma=1./self.d_
else:
self.gamma=gamma
def kernel_func(self,kernel,x1,x2):
if kernel=='linear':
return x1.dot(x2.T)
elif kernel=='rbf':
return np.exp(-self.gamma*(np.sum((x1-x2)**2)))
elif kernel=='poly':
return np.power(self.gamma*(x1.dot(x2.T)+1)+self.coef0,self.degress)
elif kernel=='sigmoid':
return np.tanh(self.gamma*(x1.dot(x2.T))+self.coef0)
def computeK(self,X,kernel):
m=X.shape[0]
K=np.zeros((m,m))
for i in range(m):
for j in range(m):
if i<=j:
K[i,j]=self.kernel_func(kernel,X[i],X[j])
else:
K[i,j]=K[j,i]
return K
# p233 公式10.24
def fit(self,X):
self.mean_x=np.mean(X,axis=0)
X_new=X-self.mean_x
K=self.computeK(X_new,kernel=self.kernel)
# sklearn实现用的eigh分解
values,vectors = np.linalg.eigh(K)
idx = values.argsort()[::-1]
# 这一步不可少
vectors/=np.sqrt(values)
self.alphas_= vectors[:, idx][:, :self.d_]
self.lambdas_= values[idx][:self.d_]
# 公式 10.25
def fit_transform(self,X):
self.fit(X)
X = X - self.mean_x
m=X.shape[0]
self.Z=np.zeros((m,self.d_))
for k in range(m):
for j in range(self.d_):
sum=0.
for i in range(m):
sum+= self.alphas_[i, j] * (self.kernel_func(self.kernel, X[i], X[k]))
self.Z[k,j]=sum
return self.Z
if __name__=='__main__':
X=np.array([[0.697,0.460],[0.774,0.376],[0.634,0.264],[0.608,0.318],[0.556,0.215],
[0.403,0.237],[0.481,0.149],[0.437,0.211],[0.666,0.091],[0.243,0.267],
[0.245,0.057],[0.343,0.099],[0.639,0.161],[0.657,0.198],[0.360,0.370],
[0.593,0.042],[0.719,0.103],[0.359,0.188],[0.339,0.241],[0.282,0.257],
[0.748,0.232],[0.714,0.346],[0.483,0.312],[0.478,0.437],[0.525,0.369],
[0.751,0.489],[0.532,0.472],[0.473,0.376],[0.725,0.445],[0.446,0.459]])
X=np.c_[X,X]
kpca=KernelPCA(d_=2, kernel='linear', gamma=1. / 2)
Z=kpca.fit_transform(X)
print('tinyml:')
#print('lambdas:', kpca.lambdas_)
#print('alphas:', kpca.alphas_)
print(Z)
import sklearn.decomposition as decomposition
sklearn_KPCA=decomposition.KernelPCA(n_components=2, kernel='linear', gamma=1. / 2, eigen_solver='dense', random_state=False)
Z2=sklearn_KPCA.fit_transform(X)
print('sklearn')
#print('lambdas:',sklearn_KPCA.lambdas_)
#print('alphas:',sklearn_KPCA.alphas_)
print(Z2)
print('Z diff:',np.sum((Z-Z2)**2))