-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathKMeans.py
97 lines (84 loc) · 3.03 KB
/
KMeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import random
import matplotlib.pyplot as plt
random.seed(1)
class KMeans:
def __init__(self,k=2):
self.labels_=None
self.mu=None
self.k=k
def init(self,X,method='kmeans++',random_state=False):
if method=='kmeans++':
if random_state is False:
np.random.seed(0)
mus=[X[np.random.randint(0,len(X))]]
while len(mus)<self.k:
Dxs=[]
array_mus=np.array(mus)
for x in X:
Dx=np.sum(np.sqrt(np.sum((x-array_mus)**2,axis=1)))
Dxs.append(Dx)
Dxs=np.array(Dxs)
index=np.argmax(Dxs)
mus.append(X[index])
self.mu=np.array(mus)
elif method=='default':
self.mu = X[random.sample(range(X.shape[0]), self.k)]
else:
raise NotImplementedError
# p203图9.2算法流程
def fit(self,X):
self.init(X,'kmeans++')
while True:
C={}
for i in range(self.k):
C[i]=[]
for j in range(X.shape[0]):
d=np.sqrt(np.sum((X[j]-self.mu)**2,axis=1))
lambda_j=np.argmin(d)
C[lambda_j].append(j)
mu_=np.zeros((self.k,X.shape[1]))
for i in range(self.k):
mu_[i]=np.mean(X[C[i]],axis=0)
if np.sum((mu_-self.mu)**2)<1e-8:
self.C=C
break
else:
self.mu=mu_
self.labels_=np.zeros((X.shape[0],),dtype=np.int32)
for i in range(self.k):
self.labels_[C[i]]=i
def predict(self,X):
preds=[]
for j in range(X.shape[0]):
d=np.zeros((self.k,))
for i in range(self.k):
d[i]=np.sqrt(np.sum((X[j]-self.mu[i])**2))
preds.append(np.argmin(d))
return np.array(preds)
if __name__=='__main__':
# p202 西瓜数据集4.0
X=np.array([[0.697,0.460],[0.774,0.376],[0.634,0.264],[0.608,0.318],[0.556,0.215],
[0.403,0.237],[0.481,0.149],[0.437,0.211],[0.666,0.091],[0.243,0.267],
[0.245,0.057],[0.343,0.099],[0.639,0.161],[0.657,0.198],[0.360,0.370],
[0.593,0.042],[0.719,0.103],[0.359,0.188],[0.339,0.241],[0.282,0.257],
[0.748,0.232],[0.714,0.346],[0.483,0.312],[0.478,0.437],[0.525,0.369],
[0.751,0.489],[0.532,0.472],[0.473,0.376],[0.725,0.445],[0.446,0.459]])
kmeans=KMeans(k=3)
kmeans.fit(X)
print(kmeans.C)
print(kmeans.labels_)
print(kmeans.predict(X))
plt.figure(12)
plt.subplot(121)
plt.scatter(X[:,0],X[:,1],c=kmeans.labels_)
plt.scatter(kmeans.mu[:,0],kmeans.mu[:,1],c=range(kmeans.k),marker='+')
plt.title('tinyml')
from sklearn.cluster import KMeans
sklearn_kmeans=KMeans(n_clusters=3)
sklearn_kmeans.fit(X)
print(sklearn_kmeans.labels_)
plt.subplot(122)
plt.scatter(X[:,0],X[:,1],c=sklearn_kmeans.labels_)
plt.title('sklearn')
plt.show()