forked from cfzd/Ultra-Fast-Lane-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeed_simple.py
32 lines (24 loc) · 802 Bytes
/
speed_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import time
import numpy as np
from model.model import parsingNet
# torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
net = parsingNet(pretrained = False, backbone='18',cls_dim = (100+1,56,4),use_aux=False).cuda()
# net = parsingNet(pretrained = False, backbone='18',cls_dim = (200+1,18,4),use_aux=False).cuda()
net.eval()
x = torch.zeros((1,3,288,800)).cuda() + 1
for i in range(10):
y = net(x)
t_all = []
for i in range(100):
t1 = time.time()
y = net(x)
t2 = time.time()
t_all.append(t2 - t1)
print('average time:', np.mean(t_all) / 1)
print('average fps:',1 / np.mean(t_all))
print('fastest time:', min(t_all) / 1)
print('fastest fps:',1 / min(t_all))
print('slowest time:', max(t_all) / 1)
print('slowest fps:',1 / max(t_all))