-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtrain.py
123 lines (103 loc) · 4.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import pickle
import torchvision
from torchvision import transforms
import torchvision.datasets as dset
from torchvision import transforms
from mydataset import OmniglotTrain, OmniglotTest
from torch.utils.data import DataLoader
from torch.autograd import Variable
import matplotlib.pyplot as plt
from model import Siamese
import time
import numpy as np
import gflags
import sys
from collections import deque
import os
if __name__ == '__main__':
Flags = gflags.FLAGS
gflags.DEFINE_bool("cuda", True, "use cuda")
gflags.DEFINE_string("train_path", "/home/data/pin/data/omniglot/images_background", "training folder")
gflags.DEFINE_string("test_path", "/home/data/pin/data/omniglot/images_evaluation", 'path of testing folder')
gflags.DEFINE_integer("way", 20, "how much way one-shot learning")
gflags.DEFINE_string("times", 400, "number of samples to test accuracy")
gflags.DEFINE_integer("workers", 4, "number of dataLoader workers")
gflags.DEFINE_integer("batch_size", 128, "number of batch size")
gflags.DEFINE_float("lr", 0.00006, "learning rate")
gflags.DEFINE_integer("show_every", 10, "show result after each show_every iter.")
gflags.DEFINE_integer("save_every", 100, "save model after each save_every iter.")
gflags.DEFINE_integer("test_every", 100, "test model after each test_every iter.")
gflags.DEFINE_integer("max_iter", 50000, "number of iterations before stopping")
gflags.DEFINE_string("model_path", "/home/data/pin/model/siamese", "path to store model")
gflags.DEFINE_string("gpu_ids", "0,1,2,3", "gpu ids used to train")
Flags(sys.argv)
data_transforms = transforms.Compose([
transforms.RandomAffine(15),
transforms.ToTensor()
])
# train_dataset = dset.ImageFolder(root=Flags.train_path)
# test_dataset = dset.ImageFolder(root=Flags.test_path)
os.environ["CUDA_VISIBLE_DEVICES"] = Flags.gpu_ids
print("use gpu:", Flags.gpu_ids, "to train.")
trainSet = OmniglotTrain(Flags.train_path, transform=data_transforms)
testSet = OmniglotTest(Flags.test_path, transform=transforms.ToTensor(), times = Flags.times, way = Flags.way)
testLoader = DataLoader(testSet, batch_size=Flags.way, shuffle=False, num_workers=Flags.workers)
trainLoader = DataLoader(trainSet, batch_size=Flags.batch_size, shuffle=False, num_workers=Flags.workers)
loss_fn = torch.nn.BCEWithLogitsLoss(size_average=True)
net = Siamese()
# multi gpu
if len(Flags.gpu_ids.split(",")) > 1:
net = torch.nn.DataParallel(net)
if Flags.cuda:
net.cuda()
net.train()
optimizer = torch.optim.Adam(net.parameters(),lr = Flags.lr )
optimizer.zero_grad()
train_loss = []
loss_val = 0
time_start = time.time()
queue = deque(maxlen=20)
for batch_id, (img1, img2, label) in enumerate(trainLoader, 1):
if batch_id > Flags.max_iter:
break
if Flags.cuda:
img1, img2, label = Variable(img1.cuda()), Variable(img2.cuda()), Variable(label.cuda())
else:
img1, img2, label = Variable(img1), Variable(img2), Variable(label)
optimizer.zero_grad()
output = net.forward(img1, img2)
loss = loss_fn(output, label)
loss_val += loss.item()
loss.backward()
optimizer.step()
if batch_id % Flags.show_every == 0 :
print('[%d]\tloss:\t%.5f\ttime lapsed:\t%.2f s'%(batch_id, loss_val/Flags.show_every, time.time() - time_start))
loss_val = 0
time_start = time.time()
if batch_id % Flags.save_every == 0:
torch.save(net.state_dict(), Flags.model_path + '/model-inter-' + str(batch_id+1) + ".pt")
if batch_id % Flags.test_every == 0:
right, error = 0, 0
for _, (test1, test2) in enumerate(testLoader, 1):
if Flags.cuda:
test1, test2 = test1.cuda(), test2.cuda()
test1, test2 = Variable(test1), Variable(test2)
output = net.forward(test1, test2).data.cpu().numpy()
pred = np.argmax(output)
if pred == 0:
right += 1
else: error += 1
print('*'*70)
print('[%d]\tTest set\tcorrect:\t%d\terror:\t%d\tprecision:\t%f'%(batch_id, right, error, right*1.0/(right+error)))
print('*'*70)
queue.append(right*1.0/(right+error))
train_loss.append(loss_val)
# learning_rate = learning_rate * 0.95
with open('train_loss', 'wb') as f:
pickle.dump(train_loss, f)
acc = 0.0
for d in queue:
acc += d
print("#"*70)
print("final accuracy: ", acc/20)