forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdense_70x.py
executable file
·4038 lines (4028 loc) · 178 KB
/
dense_70x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
from torch import nn
# import rocmKernels
def benchmark_torch_function(iters: int, function, *args) -> float:
function(*args)
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(iters):
function(*args)
end_event.record()
torch.cuda.synchronize()
return (start_event.elapsed_time(end_event) * 1.0e-3) / iters
def custom_ln(input, normalized_shape, weight, bias, eps):
# norm = normalized_shape[0]
# for x in normalized_shape[1:]:
# norm = norm * x
# print(input.shape, norm)
# ln_input = input.reshape(-1, input.shape[-1])
# # ln_input = input.view(-1, norm).contiguous()
# output = torch.empty_like(ln_input)
# rocmKernels.layernorm2d_fwd(
# output,
# ln_input,
# weight,
# bias,
# eps
# )
# print("diff:",output.shape, output_torch.shape, torch.sum(output),torch.sum(output_torch), torch.sum(torch.abs(output - output_torch)))
output_torch = torch.nn.functional.layer_norm(
input=input,
normalized_shape=normalized_shape,
weight=weight,
bias=bias,
eps=eps,
)
# print("sum", torch.sum(output_torch))
return output_torch
class ExportedModule(nn.Module):
def __init__(self):
super().__init__()
self._attr_0 = nn.Parameter(torch.randn(4608, 3594, dtype=torch.float16))
self._attr_1 = nn.Parameter(torch.randn(4608, dtype=torch.float16))
self._attr_2 = nn.Parameter(torch.randn(1, 200, 64, dtype=torch.float16))
self._attr_3 = nn.Parameter(torch.randn(1, 200, 64, dtype=torch.float16))
self._attr_4 = nn.Parameter(torch.randn(1, 200, 64, dtype=torch.float16))
self._attr_5 = nn.Parameter(torch.randn(1, 200, 64, dtype=torch.float16))
self._attr_6 = nn.Parameter(torch.randn(1, 200, 64, dtype=torch.float16))
self._attr_7 = nn.Parameter(torch.randn(1, 200, 64, dtype=torch.float16))
self._attr_8 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_9 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_10 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_11 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_12 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_13 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_14 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_15 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_16 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_17 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_18 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_19 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_20 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_21 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_22 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_23 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_24 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_25 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_26 = nn.Parameter(torch.randn(160, 32, dtype=torch.float16))
self._attr_27 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_28 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_29 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_30 = nn.Parameter(torch.randn(160, 192, dtype=torch.float16))
self._attr_31 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_32 = nn.Parameter(torch.randn(160, 192, dtype=torch.float16))
self._attr_33 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_34 = nn.Parameter(torch.randn(160, 32, dtype=torch.float16))
self._attr_35 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_36 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_37 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_38 = nn.Parameter(torch.randn(160, 240, dtype=torch.float16))
self._attr_39 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_40 = nn.Parameter(torch.randn(160, 128, dtype=torch.float16))
self._attr_41 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_42 = nn.Parameter(torch.randn(160, 120, dtype=torch.float16))
self._attr_43 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_44 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_45 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_46 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_47 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_48 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_49 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_50 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_51 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_52 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_53 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_54 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_55 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_56 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_57 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_58 = nn.Parameter(torch.randn(160, 72, dtype=torch.float16))
self._attr_59 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_60 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_61 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_62 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_63 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_64 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_65 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_66 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_67 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_68 = nn.Parameter(torch.randn(160, 72, dtype=torch.float16))
self._attr_69 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_70 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_71 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_72 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_73 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_74 = nn.Parameter(torch.randn(160, 96, dtype=torch.float16))
self._attr_75 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_76 = nn.Parameter(torch.randn(160, 144, dtype=torch.float16))
self._attr_77 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_78 = nn.Parameter(torch.randn(160, 144, dtype=torch.float16))
self._attr_79 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_80 = nn.Parameter(torch.randn(160, 72, dtype=torch.float16))
self._attr_81 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_82 = nn.Parameter(torch.randn(160, 64, dtype=torch.float16))
self._attr_83 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_84 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_85 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_86 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_87 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_88 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_89 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_90 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_91 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_92 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_93 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_94 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_95 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_96 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_97 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_98 = nn.Parameter(torch.randn(39008, 512, dtype=torch.float16))
self._attr_99 = nn.Parameter(torch.randn(39008, dtype=torch.float16))
self._attr_100 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_101 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_102 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_103 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_104 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_105 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_106 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_107 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_108 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_109 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_110 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_111 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_112 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_113 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_114 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_115 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_116 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_117 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_118 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_119 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_120 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_121 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_122 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_123 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_124 = nn.Parameter(torch.randn(64, 64, dtype=torch.float16))
self._attr_125 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_126 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_127 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_128 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_129 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_130 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_131 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_132 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_133 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_134 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_135 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_136 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_137 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_138 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_139 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_140 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_141 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_142 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_143 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_144 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_145 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_146 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_147 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_148 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_149 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_150 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_151 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_152 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_153 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_154 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_155 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_156 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_157 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_158 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_159 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_160 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_161 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_162 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_163 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_164 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_165 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_166 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_167 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_168 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_169 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_170 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_171 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_172 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_173 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_174 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_175 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_176 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_177 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_178 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_179 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_180 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_181 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_182 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_183 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_184 = nn.Parameter(torch.randn(3594, 512, dtype=torch.float16))
self._attr_185 = nn.Parameter(torch.randn(3594, dtype=torch.float16))
self._attr_186 = nn.Parameter(torch.randn(2048, 3594, dtype=torch.float16))
self._attr_187 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_188 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_189 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_190 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_191 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_192 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_193 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_194 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_195 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_196 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_197 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_198 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_199 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_200 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_201 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_202 = nn.Parameter(torch.randn(256, 64, dtype=torch.float16))
self._attr_203 = nn.Parameter(torch.randn(256, dtype=torch.float16))
self._attr_204 = nn.Parameter(torch.randn(256, 64, dtype=torch.float16))
self._attr_205 = nn.Parameter(torch.randn(256, dtype=torch.float16))
self._attr_206 = nn.Parameter(torch.randn(256, 64, dtype=torch.float16))
self._attr_207 = nn.Parameter(torch.randn(256, dtype=torch.float16))
self._attr_208 = nn.Parameter(torch.randn(256, 64, dtype=torch.float16))
self._attr_209 = nn.Parameter(torch.randn(256, dtype=torch.float16))
self._attr_210 = nn.Parameter(torch.randn(256, 64, dtype=torch.float16))
self._attr_211 = nn.Parameter(torch.randn(256, dtype=torch.float16))
self._attr_212 = nn.Parameter(torch.randn(256, 64, dtype=torch.float16))
self._attr_213 = nn.Parameter(torch.randn(256, dtype=torch.float16))
self._attr_214 = nn.Parameter(torch.randn(480, 2048, dtype=torch.float16))
self._attr_215 = nn.Parameter(torch.randn(480, dtype=torch.float16))
self._attr_216 = nn.Parameter(torch.randn(64, 256, dtype=torch.float16))
self._attr_217 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_218 = nn.Parameter(torch.randn(64, 256, dtype=torch.float16))
self._attr_219 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_220 = nn.Parameter(torch.randn(64, 256, dtype=torch.float16))
self._attr_221 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_222 = nn.Parameter(torch.randn(64, 256, dtype=torch.float16))
self._attr_223 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_224 = nn.Parameter(torch.randn(64, 256, dtype=torch.float16))
self._attr_225 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_226 = nn.Parameter(torch.randn(64, 256, dtype=torch.float16))
self._attr_227 = nn.Parameter(torch.randn(64, dtype=torch.float16))
self._attr_228 = nn.Parameter(torch.randn(144, 64, 160, dtype=torch.float16))
self._attr_229 = nn.Parameter(torch.randn(144, 1, 160, dtype=torch.float16))
self._attr_230 = nn.Parameter(torch.randn(296, 1219, dtype=torch.float16))
self._attr_231 = nn.Parameter(torch.randn(296, dtype=torch.float16))
self._attr_232 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_233 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_234 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_235 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_236 = nn.Parameter(torch.randn(39008, 512, dtype=torch.float16))
self._attr_237 = nn.Parameter(torch.randn(39008, dtype=torch.float16))
self._attr_238 = nn.Parameter(torch.randn(2048, 39008, dtype=torch.float16))
self._attr_239 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_240 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_241 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_242 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_243 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_244 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_245 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_246 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_247 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_248 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_249 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_250 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_251 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_252 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_253 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_254 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_255 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_256 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_257 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_258 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_259 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_260 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_261 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_262 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_263 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_264 = nn.Parameter(torch.randn(128, 88, dtype=torch.float16))
self._attr_265 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_266 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_267 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_268 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_269 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_270 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_271 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_272 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_273 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_274 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_275 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_276 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_277 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_278 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_279 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_280 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_281 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_282 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_283 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_284 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_285 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_286 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_287 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_288 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_289 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_290 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_291 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_292 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_293 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_294 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_295 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_296 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_297 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_298 = nn.Parameter(torch.randn(128, 88, dtype=torch.float16))
self._attr_299 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_300 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_301 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_302 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_303 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_304 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_305 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_306 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_307 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_308 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_309 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_310 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_311 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_312 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_313 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_314 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_315 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_316 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_317 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_318 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_319 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_320 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_321 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_322 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_323 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_324 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_325 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_326 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_327 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_328 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_329 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_330 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_331 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_332 = nn.Parameter(torch.randn(128, 88, dtype=torch.float16))
self._attr_333 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_334 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_335 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_336 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_337 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_338 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_339 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_340 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_341 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_342 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_343 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_344 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_345 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_346 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_347 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_348 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_349 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_350 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_351 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_352 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_353 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_354 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_355 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_356 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_357 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_358 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_359 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_360 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_361 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_362 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_363 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_364 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_365 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_366 = nn.Parameter(torch.randn(128, 88, dtype=torch.float16))
self._attr_367 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_368 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_369 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_370 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_371 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_372 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_373 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_374 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_375 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_376 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_377 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_378 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_379 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_380 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_381 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_382 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_383 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_384 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_385 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_386 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_387 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_388 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_389 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_390 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_391 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_392 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_393 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_394 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_395 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_396 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_397 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_398 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_399 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_400 = nn.Parameter(torch.randn(128, 88, dtype=torch.float16))
self._attr_401 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_402 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_403 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_404 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_405 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_406 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_407 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_408 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_409 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_410 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_411 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_412 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_413 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_414 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_415 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_416 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_417 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_418 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_419 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_420 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_421 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_422 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_423 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_424 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_425 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_426 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_427 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_428 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_429 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_430 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_431 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_432 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_433 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_434 = nn.Parameter(torch.randn(128, 88, dtype=torch.float16))
self._attr_435 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_436 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_437 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_438 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_439 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_440 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_441 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_442 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_443 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_444 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_445 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_446 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_447 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_448 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_449 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_450 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_451 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_452 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_453 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_454 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_455 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_456 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_457 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_458 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_459 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_460 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_461 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_462 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_463 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_464 = nn.Parameter(torch.randn(5120, 4096, dtype=torch.float16))
self._attr_465 = nn.Parameter(torch.randn(5120, dtype=torch.float16))
self._attr_466 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_467 = nn.Parameter(torch.randn(160, dtype=torch.float16))
self._attr_468 = nn.Parameter(torch.randn(32, 88, dtype=torch.float16))
self._attr_469 = nn.Parameter(torch.randn(32, dtype=torch.float16))
self._attr_470 = nn.Parameter(torch.randn(512, 5120, dtype=torch.float16))
self._attr_471 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_472 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_473 = nn.Parameter(torch.randn(512, dtype=torch.float16))
self._attr_474 = nn.Parameter(torch.randn(2816, 512, dtype=torch.float16))
self._attr_475 = nn.Parameter(torch.randn(2816, dtype=torch.float16))
self._attr_476 = nn.Parameter(torch.randn(2048, 2816, dtype=torch.float16))
self._attr_477 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_478 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_479 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_480 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_481 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_482 = nn.Parameter(torch.randn(1024, 2048, dtype=torch.float16))
self._attr_483 = nn.Parameter(torch.randn(1024, dtype=torch.float16))
self._attr_484 = nn.Parameter(torch.randn(2048, 1024, dtype=torch.float16))
self._attr_485 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_486 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_487 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_488 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_489 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_490 = nn.Parameter(torch.randn(2048, 4096, dtype=torch.float16))
self._attr_491 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_492 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_493 = nn.Parameter(torch.randn(2048, dtype=torch.float16))
self._attr_494 = nn.Parameter(torch.randn(4096, 2048, dtype=torch.float16))
self._attr_495 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_496 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_497 = nn.Parameter(torch.randn(4096, dtype=torch.float16))
self._attr_498 = nn.Parameter(torch.randn(128, 4096, dtype=torch.float16))
self._attr_499 = nn.Parameter(torch.randn(128, dtype=torch.float16))
self._attr_500 = nn.Parameter(torch.randn(1, 128, dtype=torch.float16))
self._attr_501 = nn.Parameter(torch.randn(1, dtype=torch.float16))
def forward(
self,
getitem,
getitem_3228,
getitem_3226,
getitem_3225,
getitem_3227,
getitem_3224,
getitem_3223,
getitem_3222,
getitem_3221,
getitem_3220,
getitem_3219,
repeat,
repeat_1,
repeat_2,
repeat_3,
repeat_4,
repeat_5,
):
tanh = torch.tanh(input=getitem)
getitem = None
tanh_68 = torch.tanh(input=getitem_3228)
getitem_3228 = None
clamp = torch.clamp(input=getitem_3226, min=-1000.1, max=1000.1)
getitem_3226 = None
nan_to_num = torch.nan_to_num(
input=clamp, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp = None
getitem_3683 = tanh[:, 0:6240]
getitem_3684 = tanh[:, 6240:7040]
getitem_3685 = tanh[:, 7040:8000]
getitem_3686 = tanh[:, 8000:8640]
getitem_3687 = tanh[:, 8640:48160]
getitem_3688 = tanh[:, 48160:48640]
getitem_3689 = tanh[:, 48640:48800]
getitem_3690 = tanh[:, 48800:48960]
getitem_3691 = tanh[:, 48960:49120]
getitem_3692 = tanh[:, 49120:49280]
getitem_3693 = tanh[:, 49280:49440]
getitem_3694 = tanh[:, 49440:49600]
getitem_3695 = tanh[:, 49600:49760]
tanh = None
getitem_3696 = tanh_68[:, 0:1120]
getitem_3697 = tanh_68[:, 1120:1760]
getitem_3698 = tanh_68[:, 1760:3520]
getitem_3699 = tanh_68[:, 3520:4960]
getitem_3700 = tanh_68[:, 4960:9760]
getitem_3701 = tanh_68[:, 9760:116000]
getitem_3702 = tanh_68[:, 116000:116160]
getitem_3703 = tanh_68[:, 116160:116320]
getitem_3704 = tanh_68[:, 116320:116480]
getitem_3705 = tanh_68[:, 116480:116640]
getitem_3706 = tanh_68[:, 116640:116800]
getitem_3707 = tanh_68[:, 116800:116960]
getitem_3708 = tanh_68[:, 116960:117120]
tanh_68 = None
getitem_3710 = nan_to_num[:, 0:32]
getitem_3711 = nan_to_num[:, 32:128]
getitem_3712 = nan_to_num[:, 128:320]
getitem_3713 = nan_to_num[:, 320:512]
getitem_3714 = nan_to_num[:, 512:544]
getitem_3715 = nan_to_num[:, 544:640]
getitem_3716 = nan_to_num[:, 640:880]
nan_to_num = None
getitem_3717 = getitem_3225[:, 0:128]
getitem_3718 = getitem_3225[:, 128:248]
getitem_3719 = getitem_3225[:, 248:344]
getitem_3720 = getitem_3225[:, 344:440]
getitem_3721 = getitem_3225[:, 440:536]
getitem_3722 = getitem_3225[:, 536:600]
getitem_3723 = getitem_3225[:, 600:696]
getitem_3724 = getitem_3225[:, 696:792]
getitem_3725 = getitem_3225[:, 792:856]
getitem_3726 = getitem_3225[:, 856:928]
getitem_3727 = getitem_3225[:, 928:1024]
getitem_3728 = getitem_3225[:, 1024:1120]
getitem_3729 = getitem_3225[:, 1120:1184]
getitem_3730 = getitem_3225[:, 1184:1248]
getitem_3731 = getitem_3225[:, 1248:1320]
getitem_3732 = getitem_3225[:, 1320:1384]
getitem_3733 = getitem_3225[:, 1384:1448]
getitem_3734 = getitem_3225[:, 1448:1544]
getitem_3735 = getitem_3225[:, 1544:1688]
getitem_3736 = getitem_3225[:, 1688:1832]
getitem_3737 = getitem_3225[:, 1832:1904]
getitem_3738 = getitem_3225[:, 1904:1968]
getitem_3225 = None
_holder__attr_0 = self._attr_0
_holder__attr_1 = self._attr_1
linear = torch.nn.functional.linear(
input=getitem_3227, weight=_holder__attr_0, bias=_holder__attr_1
)
_holder__attr_0 = _holder__attr_1 = None
getitem_4137 = linear[:, 0:512]
getitem_4138 = linear[:, 512:1024]
getitem_4139 = linear[:, 1024:1536]
getitem_4140 = linear[:, 1536:2048]
getitem_4141 = linear[:, 2048:2560]
getitem_4142 = linear[:, 2560:3072]
getitem_4143 = linear[:, 3072:3584]
getitem_4144 = linear[:, 3584:4096]
getitem_4145 = linear[:, 4096:4608]
linear = None
_holder__attr_2 = self._attr_2
add_42 = torch.add(input=getitem_3224, other=_holder__attr_2)
getitem_3224 = _holder__attr_2 = None
_holder__attr_3 = self._attr_3
add_43 = torch.add(input=getitem_3223, other=_holder__attr_3)
getitem_3223 = _holder__attr_3 = None
_holder__attr_4 = self._attr_4
add_44 = torch.add(input=getitem_3222, other=_holder__attr_4)
getitem_3222 = _holder__attr_4 = None
_holder__attr_5 = self._attr_5
add_45 = torch.add(input=getitem_3221, other=_holder__attr_5)
getitem_3221 = _holder__attr_5 = None
_holder__attr_6 = self._attr_6
add_46 = torch.add(input=getitem_3220, other=_holder__attr_6)
getitem_3220 = _holder__attr_6 = None
_holder__attr_7 = self._attr_7
add_47 = torch.add(input=getitem_3219, other=_holder__attr_7)
getitem_3219 = _holder__attr_7 = None
clamp_37 = torch.clamp(input=getitem_3717, min=-1000.1, max=1000.1)
getitem_3717 = None
clamp_38 = torch.clamp(input=getitem_3718, min=-1000.1, max=1000.1)
getitem_3718 = None
clamp_39 = torch.clamp(input=getitem_3719, min=-1000.1, max=1000.1)
getitem_3719 = None
clamp_40 = torch.clamp(input=getitem_3720, min=-1000.1, max=1000.1)
getitem_3720 = None
clamp_41 = torch.clamp(input=getitem_3721, min=-1000.1, max=1000.1)
getitem_3721 = None
clamp_42 = torch.clamp(input=getitem_3722, min=-1000.1, max=1000.1)
getitem_3722 = None
clamp_43 = torch.clamp(input=getitem_3723, min=-1000.1, max=1000.1)
getitem_3723 = None
clamp_44 = torch.clamp(input=getitem_3724, min=-1000.1, max=1000.1)
getitem_3724 = None
clamp_45 = torch.clamp(input=getitem_3725, min=-1000.1, max=1000.1)
getitem_3725 = None
clamp_46 = torch.clamp(input=getitem_3726, min=-1000.1, max=1000.1)
getitem_3726 = None
clamp_47 = torch.clamp(input=getitem_3727, min=-1000.1, max=1000.1)
getitem_3727 = None
clamp_48 = torch.clamp(input=getitem_3728, min=-1000.1, max=1000.1)
getitem_3728 = None
clamp_49 = torch.clamp(input=getitem_3729, min=-1000.1, max=1000.1)
getitem_3729 = None
clamp_50 = torch.clamp(input=getitem_3730, min=-1000.1, max=1000.1)
getitem_3730 = None
clamp_51 = torch.clamp(input=getitem_3731, min=-100.1, max=100.1)
getitem_3731 = None
clamp_52 = torch.clamp(input=getitem_3732, min=-1000.1, max=1000.1)
getitem_3732 = None
clamp_53 = torch.clamp(input=getitem_3733, min=-1000.1, max=1000.1)
getitem_3733 = None
clamp_54 = torch.clamp(input=getitem_3734, min=-1000.1, max=1000.1)
getitem_3734 = None
clamp_55 = torch.clamp(input=getitem_3735, min=-1000.1, max=1000.1)
getitem_3735 = None
clamp_56 = torch.clamp(input=getitem_3736, min=-1000.1, max=1000.1)
getitem_3736 = None
clamp_57 = torch.clamp(input=getitem_3737, min=-1000.1, max=1000.1)
getitem_3737 = None
clamp_58 = torch.clamp(input=getitem_3738, min=-1000.1, max=1000.1)
getitem_3738 = None
size_72 = getitem_4137.size()
sigmoid_51 = torch.sigmoid(input=getitem_4138)
sigmoid_52 = torch.sigmoid(input=getitem_4139)
sigmoid_53 = torch.sigmoid(input=getitem_4140)
sigmoid_54 = torch.sigmoid(input=getitem_4141)
sigmoid_55 = torch.sigmoid(input=getitem_4142)
sigmoid_56 = torch.sigmoid(input=getitem_4143)
sigmoid_57 = torch.sigmoid(input=getitem_4144)
sigmoid_58 = torch.sigmoid(input=getitem_4145)
_holder__attr_8 = self._attr_8
_holder__attr_9 = self._attr_9
layer_norm_135 = custom_ln(
input=add_42,
normalized_shape=(64,),
weight=_holder__attr_8,
bias=_holder__attr_9,
eps=1e-05,
)
add_42 = _holder__attr_8 = _holder__attr_9 = None
_holder__attr_10 = self._attr_10
_holder__attr_11 = self._attr_11
layer_norm_136 = custom_ln(
input=add_43,
normalized_shape=(64,),
weight=_holder__attr_10,
bias=_holder__attr_11,
eps=1e-05,
)
add_43 = _holder__attr_10 = _holder__attr_11 = None
_holder__attr_12 = self._attr_12
_holder__attr_13 = self._attr_13
layer_norm_137 = custom_ln(
input=add_44,
normalized_shape=(64,),
weight=_holder__attr_12,
bias=_holder__attr_13,
eps=1e-05,
)
add_44 = _holder__attr_12 = _holder__attr_13 = None
_holder__attr_14 = self._attr_14
_holder__attr_15 = self._attr_15
layer_norm_138 = custom_ln(
input=add_45,
normalized_shape=(64,),
weight=_holder__attr_14,
bias=_holder__attr_15,
eps=1e-05,
)
add_45 = _holder__attr_14 = _holder__attr_15 = None
_holder__attr_16 = self._attr_16
_holder__attr_17 = self._attr_17
layer_norm_139 = custom_ln(
input=add_46,
normalized_shape=(64,),
weight=_holder__attr_16,
bias=_holder__attr_17,
eps=1e-05,
)
add_46 = _holder__attr_16 = _holder__attr_17 = None
_holder__attr_18 = self._attr_18
_holder__attr_19 = self._attr_19
layer_norm_140 = custom_ln(
input=add_47,
normalized_shape=(64,),
weight=_holder__attr_18,
bias=_holder__attr_19,
eps=1e-05,
)
add_47 = _holder__attr_18 = _holder__attr_19 = None
nan_to_num_37 = torch.nan_to_num(
input=clamp_37, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_37 = None
nan_to_num_38 = torch.nan_to_num(
input=clamp_38, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_38 = None
nan_to_num_39 = torch.nan_to_num(
input=clamp_39, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_39 = None
nan_to_num_40 = torch.nan_to_num(
input=clamp_40, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_40 = None
nan_to_num_41 = torch.nan_to_num(
input=clamp_41, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_41 = None
nan_to_num_42 = torch.nan_to_num(
input=clamp_42, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_42 = None
nan_to_num_43 = torch.nan_to_num(
input=clamp_43, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_43 = None
nan_to_num_44 = torch.nan_to_num(
input=clamp_44, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_44 = None
nan_to_num_45 = torch.nan_to_num(
input=clamp_45, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_45 = None
nan_to_num_46 = torch.nan_to_num(
input=clamp_46, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_46 = None
nan_to_num_47 = torch.nan_to_num(
input=clamp_47, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_47 = None
nan_to_num_48 = torch.nan_to_num(
input=clamp_48, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_48 = None
nan_to_num_49 = torch.nan_to_num(
input=clamp_49, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_49 = None
nan_to_num_50 = torch.nan_to_num(
input=clamp_50, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_50 = None
nan_to_num_51 = torch.nan_to_num(
input=clamp_51, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_51 = None
nan_to_num_52 = torch.nan_to_num(
input=clamp_52, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_52 = None
nan_to_num_53 = torch.nan_to_num(
input=clamp_53, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_53 = None
nan_to_num_54 = torch.nan_to_num(
input=clamp_54, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_54 = None
nan_to_num_55 = torch.nan_to_num(
input=clamp_55, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_55 = None
nan_to_num_56 = torch.nan_to_num(
input=clamp_56, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_56 = None
nan_to_num_57 = torch.nan_to_num(
input=clamp_57, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_57 = None
nan_to_num_58 = torch.nan_to_num(
input=clamp_58, nan=0.0, posinf=65504.0, neginf=-65504.0
)
clamp_58 = None
getitem_3709 = size_72[1:]
size_72 = None
mul_59 = torch.mul(input=getitem_4138, other=sigmoid_51)
getitem_4138 = sigmoid_51 = None
mul_60 = torch.mul(input=getitem_4139, other=sigmoid_52)
getitem_4139 = sigmoid_52 = None
mul_61 = torch.mul(input=getitem_4140, other=sigmoid_53)
getitem_4140 = sigmoid_53 = None
mul_62 = torch.mul(input=getitem_4141, other=sigmoid_54)
getitem_4141 = sigmoid_54 = None
mul_63 = torch.mul(input=getitem_4142, other=sigmoid_55)
getitem_4142 = sigmoid_55 = None
mul_64 = torch.mul(input=getitem_4143, other=sigmoid_56)
getitem_4143 = sigmoid_56 = None
mul_65 = torch.mul(input=getitem_4144, other=sigmoid_57)
getitem_4144 = sigmoid_57 = None
mul_66 = torch.mul(input=getitem_4145, other=sigmoid_58)
getitem_4145 = sigmoid_58 = None
_holder__attr_20 = self._attr_20
linear_208 = torch.nn.functional.linear(
input=layer_norm_135, weight=_holder__attr_20, bias=None
)
_holder__attr_20 = None
size_109 = layer_norm_135.size()
_holder__attr_21 = self._attr_21
linear_209 = torch.nn.functional.linear(
input=layer_norm_136, weight=_holder__attr_21, bias=None
)
_holder__attr_21 = None
size_110 = layer_norm_136.size()
_holder__attr_22 = self._attr_22
linear_210 = torch.nn.functional.linear(
input=layer_norm_137, weight=_holder__attr_22, bias=None
)
_holder__attr_22 = None
size_111 = layer_norm_137.size()
_holder__attr_23 = self._attr_23
linear_211 = torch.nn.functional.linear(
input=layer_norm_138, weight=_holder__attr_23, bias=None
)
_holder__attr_23 = None
size_112 = layer_norm_138.size()
_holder__attr_24 = self._attr_24
linear_212 = torch.nn.functional.linear(
input=layer_norm_139, weight=_holder__attr_24, bias=None
)
_holder__attr_24 = None
size_113 = layer_norm_139.size()
_holder__attr_25 = self._attr_25
linear_213 = torch.nn.functional.linear(
input=layer_norm_140, weight=_holder__attr_25, bias=None
)
_holder__attr_25 = None
size_114 = layer_norm_140.size()
_holder__attr_26 = self._attr_26
_holder__attr_27 = self._attr_27
linear_176 = torch.nn.functional.linear(
input=getitem_3710, weight=_holder__attr_26, bias=_holder__attr_27
)
getitem_3710 = _holder__attr_26 = _holder__attr_27 = None
_holder__attr_28 = self._attr_28
_holder__attr_29 = self._attr_29
linear_177 = torch.nn.functional.linear(
input=getitem_3711, weight=_holder__attr_28, bias=_holder__attr_29
)
getitem_3711 = _holder__attr_28 = _holder__attr_29 = None
_holder__attr_30 = self._attr_30
_holder__attr_31 = self._attr_31
linear_178 = torch.nn.functional.linear(
input=getitem_3712, weight=_holder__attr_30, bias=_holder__attr_31
)
getitem_3712 = _holder__attr_30 = _holder__attr_31 = None
_holder__attr_32 = self._attr_32
_holder__attr_33 = self._attr_33
linear_179 = torch.nn.functional.linear(
input=getitem_3713, weight=_holder__attr_32, bias=_holder__attr_33
)
getitem_3713 = _holder__attr_32 = _holder__attr_33 = None
_holder__attr_34 = self._attr_34
_holder__attr_35 = self._attr_35
linear_180 = torch.nn.functional.linear(
input=getitem_3714, weight=_holder__attr_34, bias=_holder__attr_35
)
getitem_3714 = _holder__attr_34 = _holder__attr_35 = None
_holder__attr_36 = self._attr_36
_holder__attr_37 = self._attr_37
linear_181 = torch.nn.functional.linear(
input=getitem_3715, weight=_holder__attr_36, bias=_holder__attr_37
)
getitem_3715 = _holder__attr_36 = _holder__attr_37 = None
_holder__attr_38 = self._attr_38
_holder__attr_39 = self._attr_39
linear_182 = torch.nn.functional.linear(
input=getitem_3716, weight=_holder__attr_38, bias=_holder__attr_39
)
getitem_3716 = _holder__attr_38 = _holder__attr_39 = None
_holder__attr_40 = self._attr_40
_holder__attr_41 = self._attr_41
linear_183 = torch.nn.functional.linear(
input=nan_to_num_37, weight=_holder__attr_40, bias=_holder__attr_41
)
nan_to_num_37 = _holder__attr_40 = _holder__attr_41 = None
_holder__attr_42 = self._attr_42
_holder__attr_43 = self._attr_43
linear_184 = torch.nn.functional.linear(
input=nan_to_num_38, weight=_holder__attr_42, bias=_holder__attr_43
)
nan_to_num_38 = _holder__attr_42 = _holder__attr_43 = None
_holder__attr_44 = self._attr_44
_holder__attr_45 = self._attr_45
linear_185 = torch.nn.functional.linear(
input=nan_to_num_39, weight=_holder__attr_44, bias=_holder__attr_45
)
nan_to_num_39 = _holder__attr_44 = _holder__attr_45 = None
_holder__attr_46 = self._attr_46
_holder__attr_47 = self._attr_47
linear_186 = torch.nn.functional.linear(
input=nan_to_num_40, weight=_holder__attr_46, bias=_holder__attr_47
)
nan_to_num_40 = _holder__attr_46 = _holder__attr_47 = None
_holder__attr_48 = self._attr_48
_holder__attr_49 = self._attr_49
linear_187 = torch.nn.functional.linear(
input=nan_to_num_41, weight=_holder__attr_48, bias=_holder__attr_49
)
nan_to_num_41 = _holder__attr_48 = _holder__attr_49 = None
_holder__attr_50 = self._attr_50
_holder__attr_51 = self._attr_51