-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
83 lines (68 loc) · 2.66 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv
import math
import argparse
from cv2operator import KeyOperator, OperatorWindow, LineOperator
#Algorithm
def highlightFace(net, frame, conf_threshold=0.7):
frameOpencvDnn=frame.copy()
frameHeight=frameOpencvDnn.shape[0]
frameWidth=frameOpencvDnn.shape[1]
blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections=net.forward()
faceBoxes=[]
for i in range(detections.shape[2]):
confidence=detections[0,0,i,2]
if confidence>conf_threshold:
x1=int(detections[0,0,i,3]*frameWidth)
y1=int(detections[0,0,i,4]*frameHeight)
x2=int(detections[0,0,i,5]*frameWidth)
y2=int(detections[0,0,i,6]*frameHeight)
faceBoxes.append([x1,y1,x2,y2])
cv2.rectangle(frameOpencvDnn,(x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8)
return frameOpencvDnn,faceBoxes
parser=argparse.ArgumentParser()
parser.add_argument('--image')
args=parser.parser_args()
faceProto="opencv_face_detector.pbtxt"
faceModel="opencv_face_detector_uin8.pb"
ageProto="age_deploy.prototxt"
ageModel="age_net.caffemodel"
genderProto="gender_deploy.protot"
genderModel="gender_net.caffemodel"
MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746)
agelist=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male', 'Female']
faceNet=cv2.dnn.readNet(faceModel, faceProto)
faceNet=cv2.dnn.readNet(faceModel,faceProto)
ageNet=cv2.dnn.readNet(ageModel, ageProto)
genderNet=cv2.dnn.readNet(genderNet, genderProto)
video=cv2.VideoCapture(args.image if args.image else 0)
padding=20
while cv2.waitKey(1)>0:
hasFrame,frame=video.read()
if not hasFrame:
cv2.waitKey()
break
# Output
resultImg, faceBoxes=highlightFace(faceNet, frame)
if not faceBoxes:
print("No Face Detected")
# Looping Condition
for faceBoxes in faceBoxes:
face=frame[max(0, faceBoxes[1]-padding):
min(faceBoxes[3]+padding, frame.shape[0]-1), max(0,faceBoxes[0]-padding):
min(faceBoxes[2]+padding, frame.shape[1]-1)]
blob=cv2.dnn.blobfromImage(face,1.0, (227,227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds=genderNet,forward()
gender=genderList[genderPreds[0].argmax()]
print(f "Gender: {gender}")
# Age Output
ageNet.setInput(blob)
agePreds=ageNet.forward()
age=ageList[agePreds[0].argmax()]
print(f "Age: {age[1:-1]} years")
cv2.putText(resultImg, f"{gender},{age}", (faceBox[0]),faceBox[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,225,255), 2, cv2.LINE_AA)
cv2.lmshow("Detecting age and gender", resultImg)