Skip to content
This repository has been archived by the owner on Jul 1, 2024. It is now read-only.

Latest commit

 

History

History
173 lines (136 loc) · 6.92 KB

README.md

File metadata and controls

173 lines (136 loc) · 6.92 KB

Dropout Reduces Underfitting

Official PyTorch implementation for Dropout Reduces Underfitting

Dropout Reduces Underfitting, ICML 2023
Zhuang Liu*, Zhiqiu Xu*, Joseph Jin, Zhiqiang Shen, Trevor Darrell (* equal contribution)
Meta AI, UC Berkeley and MBZUAI

Figure: We propose early dropout and late dropout. Early dropout helps underfitting models fit the data better and achieve lower training loss. Late dropout helps improve the generalization performance of overfitting models.

Results on ImageNet-1K

Model weights are released as links on results.

Early Dropout

results with basic recipe (s.d. = stochastic depth)

model ViT-T Mixer-S Swin-F ConvNeXt-F
no dropout 73.9 71.0 74.3 76.1
standard dropout 67.9 67.1 71.6 -
standard s.d. 72.6 70.5 73.7 75.5
early dropout 74.3 71.3 74.7 -
early s.d. 74.4 71.7 75.2 76.3

results with improved recipe

model ViT-T Swin-F ConvNeXt-F
no dropout 76.3 76.1 77.5
standard dropout 71.5 73.5 -
standard s.d. 75.6 75.6 77.4
early dropout 76.7 76.6 -
early s.d. 76.7 76.6 77.7

Late Dropout

results with basic recipe

model ViT-B Mixer-B
standard s.d. 81.6 78.0
late s.d. 82.3 78.6

Installation

Please check INSTALL.md for installation instructions.

Training

Basic Recipe

We list commands for early dropout, early stochastic depth on ViT-T and late stochastic depth on ViT-B.

  • For training other models, change --model accordingly, e.g., to vit_tiny, mixer_s32, convnext_femto, mixer_b16, vit_base.
  • Our results were produced with 4 nodes, each with 8 gpus. Below we give example commands on both multi-node and single-machine setups.

Early dropout

multi-node

python run_with_submitit.py --nodes 4 --ngpus 8 \
--model vit_tiny --epochs 300 \
--batch_size 128 --lr 4e-3 --update_freq 1 \
--dropout 0.1 --drop_mode early --drop_schedule linear --cutoff_epoch 50 \
--data_path /path/to/data/ \
--output_dir /path/to/results/

single-machine

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_tiny --epochs 300 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--dropout 0.1 --drop_mode early --drop_schedule linear --cutoff_epoch 50 \
--data_path /path/to/data/ \
--output_dir /path/to/results/

Early stochastic depth

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_tiny --epochs 300 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--drop_path 0.5 --drop_mode early --drop_schedule linear --cutoff_epoch 50 \
--data_path /path/to/data/ \
--output_dir /path/to/results/

Late stochastic depth

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_base --epochs 300 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--drop_path 0.4 --drop_mode late --drop_schedule constant --cutoff_epoch 50 \
--data_path /path/to/data/ \
--output_dir /path/to/results/

Standard dropout / no dropout (replace $p with 0.1 / 0.0)

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_tiny --epochs 300 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--dropout $p --drop_mode standard \
--data_path /path/to/data/ \
--output_dir /path/to/results/

Improved Recipe

Our improved recipe extends training epochs from 300 to 600, and reduces both mixup and cutmix to 0.3.

Early dropout

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_tiny --epochs 600 --mixup 0.3 --cutmix 0.3 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--dropout 0.1 --drop_mode early --drop_schedule linear --cutoff_epoch 50 \
--data_path /path/to/data/ \
--output_dir /path/to/results/

Early stochastic depth

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_tiny --epochs 600 --mixup 0.3 --cutmix 0.3 \
--batch_size 128 --lr 4e-3 --update_freq 4 \
--drop_path 0.5 --drop_mode early --drop_schedule linear --cutoff_epoch 50 \
--data_path /path/to/data/ \
--output_dir /path/to/results/

Evaluation

single-GPU

python main.py --model vit_tiny --eval true \
--resume /path/to/model \
--data_path /path/to/data

multi-GPU

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vit_tiny --eval true \
--resume /path/to/model \
--data_path /path/to/data

Acknowledgement

This repository is built using the timm library and ConvNeXt codebase.

License

This project is released under the CC-BY-NC 4.0 license. Please see the LICENSE file for more information.

Citation

If you find this repository helpful, please consider citing:

@inproceedings{liu2023dropout,
  title={Dropout Reduces Underfitting},
  author={Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqiang Shen, Trevor Darrell},
  year={2023},
  booktitle={International Conference on Machine Learning},
}