This repository has been archived by the owner on Sep 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathdump_km_label.py
99 lines (80 loc) · 2.96 KB
/
dump_km_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import numpy as np
import joblib
import torch
import tqdm
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("dump_km_label")
class ApplyKmeans(object):
def __init__(self, km_path):
self.km_model = joblib.load(km_path)
self.C_np = self.km_model.cluster_centers_.transpose()
self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True)
self.C = torch.from_numpy(self.C_np)
self.Cnorm = torch.from_numpy(self.Cnorm_np)
if torch.cuda.is_available():
self.C = self.C.cuda()
self.Cnorm = self.Cnorm.cuda()
def __call__(self, x):
if isinstance(x, torch.Tensor):
dist = (
x.pow(2).sum(1, keepdim=True)
- 2 * torch.matmul(x, self.C)
+ self.Cnorm
)
return dist.argmin(dim=1).cpu().numpy()
else:
dist = (
(x ** 2).sum(1, keepdims=True)
- 2 * np.matmul(x, self.C_np)
+ self.Cnorm_np
)
return np.argmin(dist, axis=1)
def get_feat_iterator(feat_dir, split, nshard, rank):
feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"
with open(leng_path, "r") as f:
lengs = [int(line.rstrip()) for line in f]
offsets = [0] + np.cumsum(lengs[:-1]).tolist()
def iterate():
feat = np.load(feat_path, mmap_mode="r")
assert feat.shape[0] == (offsets[-1] + lengs[-1])
for offset, leng in zip(offsets, lengs):
yield feat[offset: offset + leng]
return iterate, len(lengs)
def dump_label(feat_dir, split, km_path, nshard, rank, lab_dir):
apply_kmeans = ApplyKmeans(km_path)
generator, num = get_feat_iterator(feat_dir, split, nshard, rank)
iterator = generator()
lab_path = f"{lab_dir}/{split}_{rank}_{nshard}.km"
os.makedirs(lab_dir, exist_ok=True)
with open(lab_path, "w") as f:
for feat in tqdm.tqdm(iterator, total=num):
# feat = torch.from_numpy(feat).cuda()
lab = apply_kmeans(feat).tolist()
f.write(" ".join(map(str, lab)) + "\n")
logger.info("finished successfully")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("feat_dir")
parser.add_argument("split")
parser.add_argument("km_path")
parser.add_argument("nshard", type=int)
parser.add_argument("rank", type=int)
parser.add_argument("lab_dir")
args = parser.parse_args()
logging.info(str(args))
dump_label(**vars(args))